Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Tứ giác DBB'D' là hình bình hành nên BD // B'D' . Vì vậy BD // (B'D'C) và BA' // CD' \(\Rightarrow\) BA' // ( B'D'C).
Từ đó suy ra ( BDA') //B'D'C).
b) Gọi , là giao điểm của AC' với A'O và CO'.
Do \(G_1=A'O\cap AI\) và A'O và AI là hai đường trung tuyến của tam giác nên \(G_1\) là trọng tâm của tam giác A'AC.
Chứng minh tương tự \(G_2\) là trọng tâm tam giác CAC'.
Suy ra \(\dfrac{AG_1}{AO}=\dfrac{2}{3}\); \(\dfrac{CG_2}{CO}=\dfrac{2}{3}\) nên đường chéo AC' đi qua trọng tâm của hai tam giác BDA' và B'D'C.
c) Do O và O' lần lượt là trung điểm của AC và A'C' nên \(OC=A'O'\) và OC' // A'O'.
Vì vậy tứ giác OCO'A là hình bình hành và OA'//OC.
Từ đó ta chứng minh được \(G_1\) lần lượt là trung điểm của \(AG_1\) và \(G_2\) là trung điểm của \(G_1C'\).
Do đó: \(AG_1=G_1G_2=G_2C\) (đpcm).
d) \(\left(A'IO\right)=\left(AA'C'C\right)\). Nên thiết diện cần tìm là (AA'C'C).
S A B C D H M N O
Cần câu d thôi đúng ko bạn?
\(ID\) cắt (SAC) tại A mà \(IA=2DA\Rightarrow d\left(I;\left(SAC\right)\right)=2d\left(D;\left(SAC\right)\right)\)
\(BD\) cắt (SAC) tại O mà \(OB=OD\Rightarrow d\left(D;\left(SAC\right)\right)=d\left(B;\left(SAC\right)\right)\)
Mặt khác \(BA=2HA\Rightarrow d\left(B;\left(SAC\right)\right)=2d\left(H;\left(SAC\right)\right)\)
\(\Rightarrow d\left(I;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)
Từ H kẻ \(HM\perp AC\), từ H kẻ \(HN\perp SM\Rightarrow HN=d\left(H;\left(SAC\right)\right)\)
Áp dụng hệ thức lượng: (chú ý rằng \(AH=\frac{AB}{2}=\frac{a}{2};OH=\frac{AD}{2}=\frac{a\sqrt{2}}{2}\))
\(\frac{1}{HM^2}=\frac{1}{AH^2}+\frac{1}{OH^2}\Rightarrow HM=\frac{AH.OH}{\sqrt{AH^2+OH^2}}=\frac{a\sqrt{6}}{6}\)
\(\frac{1}{HN^2}=\frac{1}{SH^2}+\frac{1}{HM^2}\Rightarrow HN=\frac{SH.HM}{\sqrt{SH^2+HM^2}}=\frac{a\sqrt{57}}{19}\)
\(\Rightarrow d\left(I;\left(SAC\right)\right)=\frac{4a\sqrt{57}}{19}\)
đề nghị khi đăng câu hỏi nên ấn 1 lần, sau ns sẽ hiện ra, tốn S ==
\(\lim\limits\frac{3-16.4^n}{2^n+3.4^n}=\lim\limits\frac{3\left(\frac{1}{4}\right)^n-16}{\left(\frac{2}{4}\right)^n+3}=-\frac{16}{3}\)
16.
Đặt cạnh của đáy là x
\(DM=\sqrt{AD^2+AM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)
\(CM=\sqrt{BC^2+BM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)
\(\Rightarrow DM=CM\Rightarrow\Delta_vSMD=\Delta_vSMC\)
\(\Rightarrow SC=SD=2a\sqrt{5}\)
Mà \(SM\perp\left(ABCD\right)\Rightarrow\widehat{SCM}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCM}=60^0\)
\(\Rightarrow\left\{{}\begin{matrix}CM=SC.cos60^0=a\sqrt{5}\\SM=SC.sin60^0=a\sqrt{15}\end{matrix}\right.\) \(\Rightarrow AB=x=\frac{2CM}{\sqrt{5}}=2a\)
Gọi N là trung điểm CD \(\Rightarrow CD\perp\left(SMN\right)\)
\(AM//CD\Rightarrow AM//\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)
Từ M kẻ \(MM\perp SN\Rightarrow MH\perp\left(SCD\right)\Rightarrow MH=d\left(H;\left(SCD\right)\right)\)
\(MN=AB=2a\)
\(\frac{1}{MH^2}=\frac{1}{SM^2}+\frac{1}{MN^2}\Rightarrow MH=\frac{SM.MN}{\sqrt{SM^2+MN^2}}=\frac{2a\sqrt{15}}{\sqrt{19}}\)
14.
Do \(\widehat{C'BC}\) là góc giữa (ABCD) và (ABC') nên \(\widehat{C'BC}=60^0\)
\(\Rightarrow CC'=BC.tan60^0=a\sqrt{3}\)
15.
Gọi H là trung điểm BC \(\Rightarrow OH\perp BC\)
Chóp tứ giác đều \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)
\(\Rightarrow BC\perp\left(SOH\right)\)
Từ O kẻ \(OK\perp SH\Rightarrow OK\perp\left(SBC\right)\Rightarrow OK=d\left(O;\left(SBC\right)\right)\)
\(OH=\frac{1}{2}AB=\frac{a}{2}\) ; \(AC=a\sqrt{2}\Rightarrow OA=\frac{a\sqrt{2}}{2}\)
\(SO=\sqrt{SA^2-OA^2}=\frac{a\sqrt{2}}{2}\)
\(\frac{1}{OK^2}=\frac{1}{SO^2}+\frac{1}{OH^2}\Rightarrow OK=\frac{SO.OH}{\sqrt{SO^2+OH^2}}=\frac{a\sqrt{6}}{6}\)
Đáp án A