K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\) Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\)...
Đọc tiếp

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó

A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\)

Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho

A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\) D. \(3a^3\sqrt{2}\)

Câu 3 : Một hình nón có độ dài đường sinh bằng đường kính đáy . Tính tỉ số \(\frac{S_{xq}}{S_{tp}}\)

A. \(\frac{1}{6}\) B. \(\frac{1}{3}\) C. \(\frac{2}{3}\) D. \(\frac{2}{5}\)

Câu 4 : Thiết diện qua đỉnh của hình nón là tam giác vuông cân có diện tích bằng \(3a^2\) và chiều cao của hình nón bằng \(a\sqrt{2}\) . Tính bán kính đáy của hình tròn

A. \(a\sqrt{6}\) B. 4a C. 3a D. 2a

Câu 5 : Cắt một hình trụ không nắp theo một đường sinh và " trải " lên mặt phẳng ta được một hình chữ nhật có diện tích bằng \(4\Pi a^2\) . Biết độ dài đường sinh bằng 2a , tính thể tích khối trụ đã cho

A. \(4\Pi a^3\) B. \(2\Pi a^3\) C. \(\Pi a^3\) D. \(\frac{2}{3}\Pi a^3\)

0
20 tháng 5 2017

Khối đa diện

Khối đa diện

1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\) là 2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là 3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho 4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\) A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\) 5 cho hình trụ có độ dài đường sinh l và...
Đọc tiếp

1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\)

2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là

3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho

4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\)

A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\)

5 cho hình trụ có độ dài đường sinh l và bán kính r. Nếu độ dài đường sinh khối trụ tăng lên 3 lần, diện tích đấy k đổi thì thể tích khối trụ sẽ tăng lên

A 3 lần B \(\frac{1}{3}\) lần C 9 lần D 27 lần

6 Tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số y= \(\frac{x-2}{x+1}\)

A I(1;1) B I(-1;1) C I(1;-1) D I(-1;-1)

7 tập nghiệm của bất phương trình \(log_4\left(x^2+2x-3\right)< \frac{1}{2}\)

A \(\left(-\infty;-3\right)\cup\left(1;+\infty\right)\) B \(\left(-1-\sqrt{6};-3\right)\cup\left(1;-1+\sqrt{6}\right)\) C [-3;1] D (-3;1)

8 giả sử \(\int_0^9\) f(x) dx=37 và \(\int_9^0\) g(x) . Khi đó i=\(\int_0^9\) [2f(x)+3g(x)] dx bằng

9 cho số phức z=\(\frac{1}{3-4i}\) . số phức liên hợp của z là

10 cho hai số phức z1=1+5i và z2=3-2i . Trên mặt phẳng tọa độ, điểm biểu diễn của số phức \(\overline{z}+iz_2\) là điểm nào dưới đấy

A. P(-1;-2) B.N(3;8) C.P(3;2) D Q(3;-2)

11 Trong ko gian oxyz , cho đường thẳng d : \(\frac{x +1}{1}=\frac{y-2}{3}=\frac{z}{-2}\) đi qua điểm M(0;5;m) . Gía trị của m là

A . m=0 B.m=-2 C.m=2 D.m=-1

12 Cho lăng trụ đúng ABC.\(A^,B^,C^,\) có đáy \(\Delta\) ABC vuông cân tại B ,AC =\(2\sqrt{2a}\) .Góc giữa đường thẳng \(A^,B\) và mặt phẳng (ABC) bằng \(60^0\) . Tính độ dài cạnh bên của hình lăng trụ

4
NV
6 tháng 6 2020

11.

Thay tọa độ M vào pt d ta được:

\(\frac{1}{1}=\frac{3}{3}=\frac{m}{-2}\Rightarrow m=-2.1=-2\)

12.

\(AA'\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của A'B lên (ABC)

\(\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABC)

\(\Rightarrow\widehat{A'BA}=60^0\)

\(AB=\frac{AC}{\sqrt{2}}=2a\Rightarrow AA'=AB.tan60^0=2a\sqrt{3}\)

NV
6 tháng 6 2020

8.

\(I=2\int\limits^9_0f\left(x\right)dx+3\int\limits^9_0g\left(x\right)dx=2.37+3.???=...\)

Đề thiếu, bạn tự điền số và tính

9.

\(z=\frac{1}{3-4i}=\frac{3+4i}{\left(3-4i\right)\left(3+4i\right)}=\frac{3}{25}+\frac{4}{25}i\)

\(\Rightarrow\overline{z}=\frac{3}{25}-\frac{4}{25}i\)

10.

\(\overline{z_1}=1-5i\) \(\Rightarrow\overline{z_1}+iz_2=1-5i+i\left(3-2i\right)=3-2i\)

Điểm biểu diễn là \(Q\left(3;-2\right)\)

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S) A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\) Câu 2 : Công thức tính thể tích khối cầu có bán kính R ? A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\) Câu 3 : Một hình hộp chữ nhật có ba kích thước...
Đọc tiếp

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S)

A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\)

Câu 2 : Công thức tính thể tích khối cầu có bán kính R ?

A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\)

Câu 3 : Một hình hộp chữ nhật có ba kích thước tương ứng là a , 2a , 2a . Tính thể tích khối cầu ngoại tiếp hình hộp

A. \(\frac{9\Pi a^3}{5}\) B. \(\frac{9\Pi a^3}{4}\) C. \(9\Pi a^3\) D. \(\frac{9\Pi a^3}{2}\)

Câu 4 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = \(a\sqrt{3}\) . Cạnh bên SA vuông góc với đáy và SC tạo với đáy 1 góc 600 . Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. Tâm là trung điểm SC , R = 2a

B. Tâm là trung điểm SC , R = 4a

C. Tâm trùng với tâm của đáy , R = a

D. Tâm là trung điểm SD , R = \(\frac{a\sqrt{15}}{2}\)

Câu 5 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc với đáy , cạnh bên SB bằng \(a\sqrt{3}\) . Tính thể tích khối cầu ngoại tiếp S.ABCD

A. \(\frac{4}{3}\Pi a^3\) B. \(\frac{16\sqrt{2}}{3}a^3\) C. \(12\sqrt{3}a^3\) D. \(\frac{4}{3}a^3\)

HELP ME !!!!!!!!!!!!!

4
AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 5:

Tương tự câu 4, ta thấy tâm $I$ của khối cầu ngoại tiếp $S.ABCD$ là trung điểm $SC$

Theo định lý Pitago:

$SA^2=SB^2-AB^2=(a\sqrt{3})^2-a^2=2a^2$

$AC^2=AB^2+BC^2=a^2+a^2=2a^2$

$SC=\sqrt{SA^2+AC^2}=\sqrt{2a^2+2a^2}=2a$

Do đó: $R=SI=IC=\frac{SC}{2}=a$

Thể tích khối cầu ngoại tiếp S.ABCD là:

$V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi a^3$

Đáp án A

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 4:

$AC=\sqrt{AB^2+AD^2}=2a$

$(SC, (ABCD))=\widehat{SCA}=60^0$

$\Rightarrow \frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$

$\Rightarrow SA=\sqrt{3}.AC=2\sqrt{3}a$

$SC=\sqrt{SA^2+AC^2}=\sqrt{(2\sqrt{3}a)^2+(2a)^2}=4a$

Gọi $I$ tâm mặt cầu ngoại tiếp hình chóp. $IS=IA=IC$ nên $I$ là tâm ngoại tiếp tam giác $SAC$

$\Rightarrow I$ là trung điểm $SC$.

Bán kính $IS=IC=\frac{AC}{2}=\frac{4a}{2}=2a$

Đáp án A

29 tháng 10 2022

Chọn B

Câu 1 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , cạnh a . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{6}a^3\sqrt{3}\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{1}{2}a^3\sqrt{3}\) Câu 2 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng 3a ? A. V = 3a3 ...
Đọc tiếp

Câu 1 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , cạnh a . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy

A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{6}a^3\sqrt{3}\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{1}{2}a^3\sqrt{3}\)

Câu 2 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng 3a ?

A. V = 3a3 B. V = 2a3 C. V = a3 D. V = \(a^3\sqrt{3}\)

Câu 3 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng 2a và mặt bên tạo với mặt đáy một góc 450

A. V = \(4\sqrt{3}a^3\) B. V = 2a3 C. V = \(\frac{a\sqrt{3}}{3}a^3\) D. V = \(\frac{4}{3}a^3\)

Câu 4 : Cho hình chóp S.ABC , ABC là tam giác vuông tại B , \(SA\perp\left(ABC\right)\) ; H , K tương ứng là hình

chiếu vuông góc của A lên SB , SC . Tính thể tích khối chóp S.AHK biết SA = SB = a và BC = \(a\sqrt{3}\)

A. V = \(\frac{\sqrt{3}}{6}a^3\) B. V = \(\frac{\sqrt{3}}{2}a^3\) C. V = \(\frac{\sqrt{3}}{60}a^3\) D. V = \(\frac{\sqrt{3}}{24}a^3\)

2
4 tháng 8 2020

câu 4 là SA = AB = a

NV
4 tháng 8 2020

4.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AH\)

\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\)

Lại có \(AK\perp SC\)

\(\Rightarrow SC\perp\left(AKH\right)\Rightarrow SK\) là đường cao của chóp S.AHK ứng với đáy là tam giác AHK vuông tại H (do \(AH\perp\left(SBC\right)\Rightarrow AH\perp HK\))

Áp dụng hệ thức lượng:

\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AB^2}=\)

À thôi đến đây phát hiện ra đề bài sai

\(SA\perp\left(ABC\right)\Rightarrow SA\perp AB\Rightarrow\) tam giác SAB vuông tại A với SA là cạnh góc vuông, SB là cạnh huyền

\(\Rightarrow SB>SA\Rightarrow SB=SA=a\) là hoàn toàn vô lý