Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ABCD là hình chữ nhật nên AB // CD.
Khi đó AB có phương trình: x + 2y + m = 0
Mà A(5; 1) ∈ AB nên m = -7.
Vậy AB có phương trình: x + 2y – 7 = 0
Mặt khác AD ⊥ AB nên AD có phương trình là: 2x – y + n = 0
Mà A ∈ AD nên n = -9.
Vậy AD có phương trình: 2x – y – 9 = 0.
Vì BC // AD nên BC có phương trình: 2x – y + p = 0.
Mà C ∈ BC nên p = 6
Vậy CB có phương trình 2x – y + 6 = 0.
Từ giả thiết suy ra điểm A không nằm trên 2 cạnh có phương trình đã cho. Bởi vậy, đó là phương trình của 2 đường thẳng chứa cạnh BC, CD, chẳng hạn \(BC:2x-3y+5\)
\(CD:3x+2y-7=0\)
Khi đó, đường thẳng chứa cạnh AB đi qua \(A\left(2;-3\right)\) và song song với đường thẳng CD, nên có phương trình :
\(3\left(x-2\right)+2\left(y+3\right)=0\)
hay : \(3x+2y=0\) ẳng chứa cạnh AD là :
\(2x-3y-11=0\)
\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=2d\left(I;AB\right)=\sqrt{5}\)và \(AB=2AD=2\sqrt{5}\)
Do đó \(IA=IB=IC=ID=\frac{1}{2}AC=\frac{5}{2}\)
Gọi \(\omega\) là đường tròn tâm I, bán kính \(R=IA\) thế thì \(\omega\) có phương trình \(\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\)
Do vậy tọa độ của A, B là nghiệm của hệ :
\(\begin{cases}\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\\x-2y+2=0\end{cases}\)
Giải hệ thu được \(A\left(-2;0\right);B\left(2;2\right)\) (do A có hoành độ âm), từ đó , do I là trung điểm của AC và BD suy ra \(C\left(3;0\right);D\left(-1;-2\right)\)
Lời giải:
$BD: x+2y-7=0; AD: x+3y-3=0$ nên $D$ chính là giao điểm của 2 PTĐT này.
\(\Rightarrow \left\{\begin{matrix} x_D+2y_D-7=0\\ x_D+3y_D-3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_D=15\\ y_D=-4\end{matrix}\right.\)
Vì $ABCD$ là hình thoi nên $AC\perp BD$.
$\Rightarrow \overrightarrow{AC}=\overrightarrow{n_{BD}}=(1,2)$
$\Rightarrow \overrightarrow{n_{AC}}=(-2,1)$
PTĐT $AC$ là:
$-2(x-0)+1(y-1)=0\Leftrightarrow -2x+y-1=0\Leftrightarrow 2x-y+1=0$
Gọi $O$ là giao 2 đường chèo $AC, BD$.
\(\Rightarrow \left\{\begin{matrix} 2x_O-y_O+1=0\\ x_O+2y_O-7=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_O=1\\ y_O=3\end{matrix}\right.\)
$O$ là trung điểm $BD$ nên: $x_B=2x_O-x_D=2-15=-13$
$y_B=2y_O-y_D=6+4=10$
Vì $\overrightarrow{BC}=\overrightarrow{AD}$ nên PTĐT $BC$ có dạng:
$(x+13)+3(y-10)-3=0$
$\Leftrightarrow x+3y-30=0$
$O$ là trung điểm của $AC$ nên:
$x_C=2x_O-x_A=2-0=2$
$y_C=2y_C-y_A=6-1=5$
$\Rightarrow \overrightarrow{CD}=(13, -9)$
$\Rightarrow \overrightarrow{n_{CD}}=(9,13)$
PTĐT $CD$ là: $9(x-2)+13(y-5)=0\Leftrightarrow 9x+13y-83=0$
PTĐT $AB$ là: $9(x-0)+13(y-1)=0\Leftrightarrow 9x+13y-13=0$
Phương trình đường thẳng qua O và song song AB có dạng: x−y=0x−y=0
⇒⇒ Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0{x+3y−6=0x−y=0 ⇒M(32;32)⇒M(32;32)
Phương trình đường thẳng BC qua M, nhận (1;1)(1;1) là 1 vtpt có dạng:
1(x−32)+1(y−32)=0⇔x+y−3=01(x−32)+1(y−32)=0⇔x+y−3=0
Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0{x−y+5=0x+y−3=0 ⇒B⇒B
M là trung điểm BC ⇒⇒ tọa độ C
O là trung điểm AC ⇒⇒ tọa độ A
O là trung điểm BD
cạnh thứ ba 2x-5y+3=0. cạnh thứ tư 2x-5y-26=0, đường chéo thứ hai 7x-3x-33=0
CD: x + 2y – 12 = 0 ⇒ CD nhận là một vtpt
⇒ CD nhận là một vtcp.
+ ABCD là hcn ⇒ AD ⊥ CD ⇒ AD nhận là một vtpt
A(5 ; 1) ∈ AD
⇒ Phương trình đường thẳng AD: 2( x- 5) – 1(y – 1) = 0 hay 2x – y – 9 = 0.
+ ABCD là hcn ⇒ AB // CD ⇒ AB nhận là một vtpt
A(5;1) ∈ AB
⇒ Phương trình đường thẳng AB: 1( x- 5) + 2(y -1) = 0 hay x + 2y – 7 = 0
+ ABCD là hcn ⇒ BC ⊥ CD ⇒ BC nhận là một vtpt
C(0, 6) ∈ CD
⇒ Phương trình đường thẳng BC: 2(x- 0)- 1(y – 6) =0 hay 2x – y + 6 = 0.