K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

9 tháng 4 2017

Đáp án D

28 tháng 2 2018

Đáp án D

Dựng HK ⊥ BD, do SH ⊥ BD nên ta có:

(SKH) ⊥ BD =>  Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là góc SKH = 600

 

Lại có: 

Do đó

Vậy 

22 tháng 7 2018

Đáp án A

Phương pháp: Xác định góc giữa hai mặt phẳng bằng cách xác định góc giữa hai đường thẳng lần lượt vuông  góc với giao tuyến.

Cách giải:

Kẻ IH ⊥ CD ta có: 

Ta có: 

Gọi E là trung điểm của AB => EC = AD = 2a

11 tháng 12 2018

Chọn đáp án D.

6 tháng 12 2019

13 tháng 6 2018

Chọn B

28 tháng 8 2017

13 tháng 3 2019

Đáp án C

Kẻ I M ⊥ S D tại M Đường thẳng  I M ⊂ m p P

ABCD là hình vuông ⇒ C D ⊥ A D  mà  S A ⊥ C D ⇒ C D ⊥ S A D

Ta có P ⊥ A D  mà  C D ⊥ A D ⇒ C D / / m p P

Qua I kẻ đường thẳng song song với CD, cắt BC tại P

Qua M kẻ đường thẳng song song với CD, cắt SC tại N

Suy ra mặt phẳng (P) cắt khối chóp S.ABCD theo thiết diện là hình thang vuông IMNP tại MI.

Tam giác SAD vuông tại A có  d A ; S D = a 3 ⇒ I M = a 3 2

Tam giác IMD vuông tại M có  M D = I D 2 − I M 2 = a 2 ⇒ S M S D = 7 8 ⇒ M N = 7 a 4

Vậy diện tích hình thang IMNP là  S = I M . M N + I P 2 = a 3 2 . 1 2 . 7 a 4 + 2 a = 15 3 16 a 2

7 tháng 12 2017

Đáp án C

Theo dữ kiện đề bài cho, dễ dàng chứng minh được ΔACD vuông tại cân C và A C = A D 2 = a 2 .

C D ⊥ A C C D ⊥ S A ⇒ C D ⊥ S A C ⇒ S A C ⊥ S C D

Mà S A C ∩ S C D = S C , từ A kẻ A H ⊥ S C . Khi đó d A ; S C D = A H .

Tam giác SAC vuông tại

 A: 1 A H 2 = 1 S A 2 + 1 A C 2 = 1 a 2 + 1 2 a 2 = 3 2 a 2 ⇒ d A ; S C D = A H = a 2 3

Mặt khác: A D ∩ S C D = D  và M là trung điểm AD nên:

d M ; S C D d A ; S C D = M D A D = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C D = a 6 6