K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

Chọn B.

Tam giác SAB cân tại S và  S A B ^ = 60 °  nên tam giác SAB đều ⇒ SA = a

Bán kính đường tròn ngoại tiếp tứ giác ABCD là:

Thể tích của hình nón đỉnh S đáy là đường tròn ngoại tiếp ABCD là:

5 tháng 4 2016

S M H G N A O D C

Ta có \(\begin{cases}BC\perp SA\\BC\perp AB\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\)\(\Rightarrow BC\perp AM\) (vì \(AM\subset\left(SAB\right)\left(1\right)\)

Mặt khác \(SC\perp\alpha\Rightarrow SA\perp AM\) (vì \(AM\subset\alpha\)) (2)

Từ (1) và (2) suy ra \(AM\perp\left(SBC\right)\Rightarrow AM\perp MG\) (vì \(MG\subset\left(SBC\right)\))

\(\Rightarrow\Delta AMG\) vuông tại M, tương tự ta cũng có tam giác ANG vuông tại N \(\Rightarrow\) tâm H đường tròn đáy của (H) là trung điểm AG, có bán kính \(R=\frac{AG}{2}\)

Xét tam giác vuông SAC tại A có \(AG=\frac{SA.AC}{SC}=\frac{\sqrt{6}}{3}a\Rightarrow R=\frac{\sqrt{6}}{6}a\)

Vì OH là đường cao (H)\(\Rightarrow OH\perp\alpha\Rightarrow OH\)//\(SC\Rightarrow O\) là giao điểm hai đường chéo AC, BD

\(\Rightarrow OH=\frac{1}{2}CG\).

Xét tam giác vuoongSAC có AG là đường cao, nên \(CG=\frac{AC^2}{SC}=\frac{2}{\sqrt{3}}a\Rightarrow OH=\frac{\sqrt{3}}{3}a\)

Vậy thể tích hình nón là \(V_{\left(H\right)}=\frac{1}{3}\pi.R^2.OH=\frac{\sqrt{3}}{54}\pi a^3\)

21 tháng 7 2018

Đáp án B

9 tháng 2 2019

Chọn B.

22 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

28 tháng 5 2019

Đáp án B

 

S.ABCD là chóp tứ giác đều ⇒ ABCD là hình vuông

Thể tích của khối nón đỉnh S có đáy là đường tròn ngoại tiếp tứ giác ABCD:

18 tháng 4 2016

S D A H B M C I N

Gọi H là tâm của ABCD\(\Rightarrow SH\perp\left(ABCD\right)\)

      M là trung điểm của BC \(\Rightarrow BC\perp\left(SHM\right)\)

Do các mặt bên tạo với đáy cùng 1 góc => \(\widehat{SHM}\) bằng góc tạo bởi 2 mặt bên với đáy

Tính được \(SH=\frac{a\sqrt{3}}{2}'HM=\frac{a}{2}\)

\(\tan\widehat{SMH}=\frac{SH}{MH}=\sqrt{3}\Rightarrow\widehat{SMN}=60^0\)

Lập luận được tâm khối cầu là điểm I của SH với trung trực SC trong (SHC)

Tính được bán kính khối cầu do tam giác SNI đồng dạng với tam giác SHC

\(\Rightarrow SI=\frac{SN.SC}{SH}=\frac{5a}{4\sqrt{3}}\)

Vậy \(V=\frac{4}{3}\pi R^2=\frac{125a^3\sqrt{3}\pi}{432}\)

21 tháng 7 2016

hep