K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

Đáp án C

Ta có

31 tháng 3 2017

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

NV
7 tháng 1 2024

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

NV
7 tháng 1 2024

loading...

22 tháng 8 2017

Đáp án D

10 tháng 7 2018

20 tháng 6 2018

Đáp án C

NV
25 tháng 10 2020

Mặt phẳng (SAC) và (SBD) cắt nhau bởi giao tuyến SO

Mặt phẳng (SAC) và (MNPQ) cắt nhau bởi giao tuyến MP

Mặt phẳng (SBD) và (MNPQ) cắt nhau bởi giao tuyến NQ

\(\Rightarrow\) 3 mặt phẳng (SAC), (SBD), (MNPQ) cắt nhau theo 3 giao tuyến phân biệt MP, NQ, SO nên 3 đường thẳng này đồng quy