Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Phương pháp: Xét tính đúng sai của từng mệnh đề.
Cách giải: B sai vì mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là ∆ I B D
Đáp án C
Phương pháp: Suy luận từng đáp án.
Cách giải:
A đúng.
Ta có IO // SA => IO // (SAB) và IO // (SAD) => B, D đúng.
Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện chính là tam giác IBD. C sai
Với x = S A S A = 1 ; y = S M S B , z = S N S C ; t = S P S D
ta có 1 x + 1 z = 1 y + 1 t và xét tam giác SAC ta có
Mặt khác ba điểm A, I, N thẳng hang nên
1 4 + 1 4 z = 1 ⇔ z = 1 3
Do đó 1 y + 1 t = 1 1 + 1 1 3 = 4 ⇒ y = t 4 t - 1
Vì vậy
Dấu bằng đạt tại t = 1 2 ; y = 1 2 . Tức mặt phẳng α đi qua trung điểm các cạnh SB. SD.
Chọn đáp án C.
Chọn B.
Phương pháp: Xét tính đúng sai của từng mệnh đề.
Cách giải: Ta có 4 điểm M, N, O, P đồng phẳng.
Đáp án C
Ta có: O I / / S A O I ∉ S A B ⇒ O I / / S A B nên A đúng
Ta có: O I / / S A O I ∉ S A D ⇒ O I / / S A D nên B đúng
Ta có: (IBD)cắt hình chóp theo thiết diện là tam giác IBD nên
Ta có: I B D ∩ S A C = I O nên D đúng.