K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

Tham khảo hình vẽ bên.

Gọi P, Q lần lượt là trung điểm của CD, SD. Khi đó thiết diện tạo bởi mặt phẳng (OMN) với hình chóp là hình thang MNPQ. Thật vậy:

Chọn B.

7 tháng 6 2018

Đáp án là A

29 tháng 1 2019

4 tháng 12 2017

15 tháng 2 2017

Đáp án B

Gọi  P = M N ∩ A C ; I = P K ∩ S O

Do M N / / B D  nên giao tuyến của (MNK) với (SBD) song song với MN. Qua I dựng đường thẳng song song với MN cắt SD, SB lần lượt tại E và F khi đó thiết diện là ngũ giác  K E M N F

3 tháng 12 2018

Đáp án A

Qua G kẻ đường thẳng d song song với AB và cắt SA, SB lần lượt tại hai điểm Q, P. Vì MN là đường trung bình của ABCD ⇒ MN//AB

Do đó MN//PQ. Vậy giao tuyến của mặt phẳng (MNG) và (SAB) là PQ.

Mặt phẳng (MNG) cắt khối chóp S.ABCD theo thiết diện là tứ giác MNPQ

Vì MN//PQ suy ra MNPQ là hình thang

Để MNPQ là hình bình hành  ⇔ MN=PQ (1)

Gọi I là trung điểm của AB, G là trọng tâm tam giác  S A B ⇒ S G S I = 2 3

Tam giác SAB có  P Q / / A B ⇒ P Q A B = S G S I = 2 3 ⇔ P Q = 2 3 A B (2)

MN là đường trung bình  hình thang  A B C D ⇒ M N = A B + C D 2 (3)

Từ (1) , (2) và (3) suy ra 2 3 A B = A B + C D 2 ⇔ 4 A B = 3 A B + 3 C D ⇔ A B = 3 C D .

30 tháng 11 2017

Đáp án là A

27 tháng 8 2019

Đáp án D

Qua O dựng đường thẳng P Q ∥ A B . Vậy P, Q lần lượt là trung điểm của ADBC.

Qua P dựng đường thẳng P N ∥ S A . Vậy N là trung điểm của SD

Qua Q dựng đường thẳng Q M ∥ S B . Vậy M là trung điểm của SC.

Nối MN thiết diện của (P) và hình chóp S.ABCD là tứ giác MNPQ.

Vì P Q ∥ C D , M N ∥ C D ⇒ P Q ∥ M N . Vậy tứ giác MNPQ là hình thang.

Ta có P Q = A B = 8 $ , M N = 1 2 A B = 4, M Q = N P = 1 2 S A = 3 . Vậy MNPQ là hình thang cân.

Gọi H là chân đường cao hạ từ đỉnh M của hình thang MNPQ. Khi đó ta có 

H Q = 1 4 P Q = 2 ⇒ M H = M Q 2 − H Q 2 = 5

Vậy diện tích của thiết diện cần tìm là  S = ( M N + P Q ) M H 2 = 6 5 .

27 tháng 9 2019

30 tháng 5 2017