K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

+)Gọi H là chân đường cao hạ từ A - -> BC 
Tam giác AHC vuông tại H nên 
AH = √(a² -a²/4) = a√3/2 
Diện tích tam giác ABC là S(ABC) = 1/2.AH.BC= 1/2.a²√3/2 
(dvdt) 
+)Từ S hạ SK ┴ AH , Kết hợp AH ┴ BC ta có SK ┴ (ABC) 
Hay SK là đường cao của hình chóp đều SABC 
+) Bài cho góc giữa các mặt bên với đáy là 60 độ nên 
góc giữa (SH,HK) = 60 độ 
Tam giác vuông SKH có SK = HK.tan(60) 
Tam giác vuông BKH có HK = a/2.tan(30) = a√3/6 
- - > SK = a√3/6.tan(60) = a/2 
Vậy V(SABC) =1/3.SK.S(ABC) = 1/3.a/2.1/2.a²√3/2 
= a³√3/24 (dvtt)

29 tháng 3 2016

A B C S H

Gọi H là trung điểm của BC=> HA=HB=HC

Kết hợp với giả thiết

SA=SB=SC=>\(SH\perp BC,\Delta SHA=\Delta SHB=SHC\)

\(\begin{cases}SH\perp\left(ABC\right)\\\widehat{SAH}=60^0\end{cases}\)

Tam giác ABC là tam giác vuông cân tại A

\(AC=AB=a\sqrt{2}\Rightarrow BC=2a\Rightarrow AH=a\)

Tam giác SHA vuông :

\(SH=AH.\tan60^0=a\sqrt{3}\Rightarrow V_{S.ABC}=\frac{1}{3}.\frac{1}{2}AB.AC.SH=\frac{\sqrt{3}a^3}{3}\)

Gọi O; R lần lượt là tâm và bán kính của mặt cầu ngoại tiếp chóp S.ABC. Suy ra P thuộc đường thẳng SH, nên O thuộc mặt phẳng (SBC). Do đó R là bán kính đường tròn ngoại tiếp tam giác SBC. 

Xét tam giác SHA ta có : \(SA=\frac{SH}{\sin60^0}=2a\Rightarrow\Delta SBC\) là tam giác đều có độ dài cạnh bằng 2a.

Suy ra \(R=\frac{2a}{2\sin60^0}=\frac{2a\sqrt{3}}{3}\)

30 tháng 3 2018

Đáp án A

Phương pháp:

 

Thể tích khối chóp vuông

Cách giải:

S.ABC có SA, SB, SC đôi một vuông góc với nhau

⇒ S.ABC là tứ diện vuông tại đỉnh S

6 tháng 1 2018

Đáp án A