K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Đáp án A

Ta có 

Tam giác SAC vuông tại A có đường cao AH nên

Do đó 

Mặt khác 

Suy ra

Phân tích phương án nhiễu.

Phương án B: Sai do HS tính sai  

Do đó tính được 

Phương án C: Sai do HS tính được  nên:

Phương án D: Sai do HS nhầm với tỷ số thể tích của hai khối SABC và HABC

26 tháng 5 2016

s B A D C O M

 

Hình chiếu vuông góc của SA lên (ABCD) là AO nên góc giữa SA và (ABCD) là \(\widehat{SAO}\)

Xét \(\Delta SAO\left(\perp O\right)\) ta có : \(SA=\frac{a\sqrt{5}}{2};AO=\frac{1}{2}AC=\frac{1}{2}a\sqrt{2}\)

\(\cos\widehat{SAO}=\frac{AO}{SA}=\frac{\frac{a\sqrt{2}}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{10}}{5}\)

c. Xét \(\Delta SOC\) có : \(\begin{cases}SO\perp BD\\OC\perp BD\end{cases}\) nên \(\left(SOC\right)\perp BD\) mà \(OM\subset\left(SOC\right)\Rightarrow OM\perp BD\)

xét : \(\left(MBD\right)\cap\left(ABCD\right)=BD\)

Trong (MBD) có \(OM\perp BD\)

Trong (ABCD) có \(OC\perp BD\)

Vậy góc giữa (MBD) và (ABCD) là \(\widehat{MOC}\)

Ta có : \(\Delta SAC\) đồng dạng với \(\Delta MOC\) (vì \(CM=\frac{1}{2}CS;CO=\frac{1}{2}CA\))nên \(\widehat{MOC}=\widehat{SAC}\)

3 tháng 7 2016

tính thể tích sao vậy

23 tháng 2 2021

Gọi HH là trung điểm của BCBC suy ra

AH=BH=CH=1\2BC=a\2.

Ta có: SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2

ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α

⇒tanα=SH\AH=√3⇒α=60∘

26 tháng 5 2017

Hỏi đáp Toán

NV
23 tháng 3 2022

Tam giác SAB đều \(\Rightarrow SH\perp AB\)

Mà \(\left\{{}\begin{matrix}AB=\left(SAB\right)\cap\left(ABCD\right)\\\left(SAB\right)\perp\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SH\perp\left(ABCD\right)\)

Gọi N là trung điểm SC \(\Rightarrow MN\) là đường trung bình tam giác SCD

\(\Rightarrow\left\{{}\begin{matrix}MN||CD\\MN=\dfrac{1}{2}CD\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}MN||AH\\MN=AH\end{matrix}\right.\) \(\Rightarrow AMNH\) là hbh

\(\Rightarrow AM||HN\Rightarrow AM||\left(SHC\right)\)

\(\Rightarrow d\left(AM;SC\right)=d\left(AM;\left(SHC\right)\right)=d\left(A;\left(SHC\right)\right)\)

Mặt khác H là trung điểm AB \(\Rightarrow d\left(A;\left(SHC\right)\right)=d\left(B;\left(SHC\right)\right)\)

Từ B kẻ \(BE\perp HC\Rightarrow BE\perp\left(SHC\right)\) (do \(SH\perp BE\))

\(\Rightarrow BE=d\left(B;\left(SHC\right)\right)\)

Hệ thức lượng: \(BE=\dfrac{BH.BC}{CH}=\dfrac{BH.BC}{\sqrt{BH^2+BC^2}}=\dfrac{a\sqrt{5}}{5}\)

b.

Từ D kẻ \(DF\perp HC\Rightarrow DF\perp\left(SHC\right)\) (do \(SH\perp DF\))

\(\Rightarrow DF=d\left(D;\left(SHC\right)\right)\)

\(DF=DC.cos\widehat{FDC}=DC.cos\widehat{BCH}=\dfrac{DC.BC}{CH}=\dfrac{DC.BC}{\sqrt{BC^2+BH^2}}=\dfrac{2a\sqrt{5}}{5}\)

NV
23 tháng 3 2022

undefined