K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 7 2021

\(d\left(I,\left(P\right)\right)=\frac{\left|-2.2-1.1+2.3-10\right|}{\sqrt{2^2+1^2+2^2}}=3\)

Bán kính đường tròn \(\left(C\right)\)là: \(\frac{14\pi}{2\pi}=7\)

Bán kính \(r\)của mặt cầu \(\left(S\right)\)là: \(\sqrt{3^2+7^2}=\sqrt{58}\).

27 tháng 7 2021

\(\sqrt{58}nha\)

30 tháng 4 2019

Milk lộn toán hình nhé!

30 tháng 4 2019

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A=(0;0;a)B=(a;0;a)D=(0;a;a)C=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có AP=(a;a2;a)AP→=(a;a2;a)

                       BC=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BCBC′ ta có :

         cosα=0+a22+a2a2+a22+a2.a2+a2=12α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : AP=(a;a2;a)AP→=(a;a2;a)AB=(a;0;0),AC=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

[AP,AB]=(a2a00;aa0a;aa2a0)=(0;a2;a22)[AP,AB].AC=0+a3a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC=16[AP,AB].AC=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (ADCB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(ADCB)(A′D′CB) là x+za=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là n=(1;0;1).n→=(1;0;1).

Từ giả thiết MAD,NDB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k2;k2),N=(k2;a2k2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−MN=(k2;a22k2;k2).MN→=(k2;a2−2k2;–k2).

Ta có −−MN.n=1.k2+0(a22k2)+1.(k2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

−−MNn.⇒MN→⊥n→.

Rõ ràng Nmp(ADCB).N∉mp(A′D′CB). Suy ra MN song song với mp(ADCB).(A′D′CB).

d) Ta có MN2=(k2)2+(a22k2)2+(k2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k22a2k+a2=3(ka23)2+a293a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a23k=a23 (thoả mãn điều kiện 0<k<a20<k<a2 ).

Vậy MN ngắn nhất bằng a33a33 khi k=a23k=a23.

e) Khi MN ngắn nhất thì k=a23k=a23 Khi đó −−MN=(a3;a3;a3).MN→=(a3;a3;–a3).

Ta lại có AD=(0;a;a),DB=(a;a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−MN.AD=0,−−MN.DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)

                       −−→BC′=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :

         cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).

Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒−−−→MN⊥→n.⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).

d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).

Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.

e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).

Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C  nên MN//A′C.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)

                       −−→BC′=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :

         cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).

Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒−−−→MN⊥→n.⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).

d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).

Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.

e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).

Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C  nên MN//A′C.

Mặt khác AC=(a;a;a)=3−−MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−MNMN→ACA′C→ cùng phương. Do NACN∉A′C  nên MN//AC.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A=(0;0;a)B=(a;0;a)D=(0;a;a)C=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có AP=(a;a2;a)AP→=(a;a2;a)

                       BC=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BCBC′ ta có :

         cosα=0+a22+a2a2+a22+a2.a2+a2=12α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : AP=(a;a2;a)AP→=(a;a2;a)AB=(a;0;0),AC=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

[AP,AB]=(a2a00;aa0a;aa2a0)=(0;a2;a22)[AP,AB].AC=0+a3a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC=16[AP,AB].AC=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (ADCB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(ADCB)(A′D′CB) là x+za=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là n=(1;0;1).n→=(1;0;1).

Từ giả thiết MAD,NDB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k2;k2),N=(k2;a2k2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−MN=(k2;a22k2;k2).MN→=(k2;a2−2k2;–k2).

Ta có −−MN.n=1.k2+0(a22k2)+1.(k2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

−−MNn.⇒MN→⊥n→.

Rõ ràng Nmp(ADCB).N∉mp(A′D′CB). Suy ra MN song song với mp(ADCB).(A′D′CB).

d) Ta có MN2=(k2)2+(a22k2)2+(k2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k22a2k+a2=3(ka23)2+a293a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a23k=a23 (thoả mãn điều kiện 0<k<a20<k<a2 ).

Vậy MN ngắn nhất bằng a33a33 khi k=a23k=a23.

e) Khi MN ngắn nhất thì k=a23k=a23 Khi đó −−MN=(a3;a3;a3).MN→=(a3;a3;–a3).

Ta lại có AD=(0;a;a),DB=(a;a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−MN.AD=0,−−MN.DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác AC=(a;a;a)=3−−MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−MNMN→ACA′C→ cùng phương. Do NACN∉A′C  nên MN//AC.

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

7 tháng 10 2017


3 tháng 5 2018


7 tháng 11 2021

Bán kính mặt cầu ngoại tiếp hình chóp đã cho là R = \(\dfrac{1}{2}\sqrt{a^2+b^2+c^2}\).

Diện tích mặt cầu cần tìm là S = 4\(\pi\)R= (a2+b2+c2)\(\pi\).

Thể tích khối cầu cần tìm là V = 4/3.\(\pi\)R3 = \(\dfrac{\pi}{6}\sqrt{a^2+b^2+c^2}^3\).

13 tháng 11 2019

Đáp án B