Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A) Gọi I là giao điểm của EF và AB Vì EF là đường trung trực của MB nên BE=BF xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv) IE=IF; EF vuông góc AB =) E và F đối xứng nhau qua AB nên ta chứng minh được hai tam giác BEI và BF1 bằng nhau. 1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi 1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC
BÀI 1: Gọi I là giao điểm của EF và AB
Vì EF là đường trung trực của MB nên BE = BF
Xét hai tam giác BEI và BFI thì chúng bằng nhau ( t.hợp ch-cgv)
=> IE = IF; EF vuông góc AB
=> E và F đối xứng nhau qua AB
* xét tứ giác MEBF có :
- EM = EB; FM = FB ( È là đường trung trực của MB)
mà E và F đối xứng nhau qua AB nên ta c/m được hai tam giác BEI và BFI bằng nhau ( t.hợp ch-cgv)
=> EM = EB = FM = FB
=> MEBF là hình thoi
*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC
Bài 1:
a) Đặt \(6x+7=y\)
\(PT\Leftrightarrow y^2\left(y-1\right)\left(y+1\right)=72\)
\(\Leftrightarrow y^4-y^2-72=0\)
\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)
Mà \(y^2+8>0\left(\forall y\right)\)
\(\Rightarrow y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow\left(6x+4\right)\left(6x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x+4=0\\6x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{cases}}\)
b) đk: \(x\ne\left\{-4;-5;-6;-7\right\}\)
\(PT\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
Bài 2 không tiện vẽ hình nên thôi nhờ godd khác:)
Bài 3:
Ta có:
\(a_n=1+2+3+...+n\)
\(a_{n+1}=1+2+3+...+n+\left(n+1\right)\)
\(\Rightarrow a_n+a_{n+1}=2\cdot\left(1+2+3+...+n\right)+\left(n+1\right)\)
\(=2\cdot\frac{n\left(n+1\right)}{2}+n+1\)
\(=n^2+n+n+1=\left(n+1\right)^2\)
Là SCP => đpcm
a) Do AM = DN Þ MADN là hình bình hành
⇒ D ^ = A M N ^ = E M B ^ = M B C ^
Ta có DMPE = DBPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.
b) Tứ giác MEBF có MB Ç EF = P; Lại có P trung điểm BM, P là trung điểm EF, MB ^ EF.
Þ MEBF là hình thoi.
c) Để BNCE là hình thang cân thì C N E ^ = B E N ^
Mà
C N E ^ = D ^ = M B C ^ = E B M ^ nên DMEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì A B C ^ = 60 0