K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

a) Do AM = DN Þ MADN là hình bình hành

⇒   D ^ = A M N ^ = E M B ^ = M B C ^  

Ta có DMPE = DBPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB Ç EF = P; Lại có P trung điểm BM, P là trung điểm EF, MB ^ EF.

Þ  MEBF là hình thoi.

c) Để BNCE là hình thang cân thì C N E ^ = B E N ^  

C N E ^ = D ^ = M B C ^ = E B M ^  nên DMEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì  A B C ^ = 60 0

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:a) E và F đối xứng qua ABb) MEBF là hình thoic) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.a) chứng minh AH là trục đối xứng...
Đọc tiếp

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:

a) E và F đối xứng qua AB

b) MEBF là hình thoi

c) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?

Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.

a) chứng minh AH là trục đối xứng của tam giác ABC?

b) các tứ giác EMCB, BEMH, AEHM là hình gì? vì sao?

c) tìm điều kiện tam giác ABC để AEHM là hình vuông?

Trong trường hợp này tính diện tích tam giác BHE. Biết AB=4cm

Bài 3: Gọi E, F lần lượt là trung điểm AB, AC của tam giác ABC.

a) Tứ giác EFCB là hình gì? vì sao?

b) CE và BF cắt nhau tại G. Gọi K, H thứ tự là trung điểm của GC và GB. Chứng minh EFKH là hình bình hành.

c) Tìm điều kiện của tam giác ABC để EFKH là hình chữ nhật.

Khi đó so sánh diện tích EFKH với diện tích tam giác ABC

Vẽ hình và giải giúp mình nha. (bài nào làm được thì làm ạ)

Mình đang cần gấp.

Mơn nhìu~~

 

1
9 tháng 6 2019

1A)  Gọi I là giao điểm của EF và AB                                                                                                                                                                   Vì EF là đường trung trực của MB nên BE=BF                                                                                                                                             xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv)                                                                                                                 IE=IF; EF vuông góc AB  =) E và F đối xứng nhau qua AB nên ta chứng minh  được hai tam giác BEI và BF1 bằng nhau.                   1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB 
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI 
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB 
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi                                                                                                                                                                   1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC

14 tháng 12 2017

 BÀI 1: Gọi I là giao điểm của EF và AB 
Vì EF là đường trung trực của MB nên BE = BF 
Xét hai tam giác BEI và BFI thì chúng bằng nhau ( t.hợp ch-cgv) 
=> IE = IF; EF vuông góc AB 
=> E và F đối xứng nhau qua AB 
* xét tứ giác MEBF có : 
- EM = EB; FM = FB ( È là đường trung trực của MB) 
mà E và F đối xứng nhau qua AB nên ta c/m được hai tam giác BEI và BFI bằng nhau ( t.hợp ch-cgv) 
=> EM = EB = FM = FB 
=> MEBF là hình thoi 
*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC 
để EBCN là hình thang cân thì EN = BC

15 tháng 6 2019

a) Xét tam giác ABC và tam giác BAD, ta có:

AB: cạnh chung

AC=AD (ABCD:hình thang cân)

BC=AD (ABCD: hình thang cân)

  =>Tam giác ABC = tam giác BAD (c-c-c)

  =>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)

  Ta có:

\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)

BDC^ = BDA^ + ADC^

ACD^ = BDC^ (ABCD: hình thang cân)

ACB^ = BDA^ (cmt)

  =>BCD^ = ADC^

  Ta lại có AB//CD (gt):

  => ABC^ = BCD^ (2 góc sole trong)

       BAD^ = ADC^ (2 góc sole trong)

       BCD^ = ADC^ (cmt)

  => ABC^ = BAD^

  Ta có ME//BC (gt):

  => MEA^ = ABC^ (2 góc sole trong)

  Mà ABC^ = BAD^ (cmt)

  => MEA^ = BAD^

Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)

  => MEA^ = MAE^

  => Tam giác MAE cân tại M.

15 tháng 6 2019

MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:

a) Tam giác MAE cân

b) AF = DE