Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)
Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)
(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt
Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\) \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)
Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \) là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)
\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :
\(x_2-x_1=x_3-x_2=x_4-x_3\)
\(\Leftrightarrow t_2=9t_1\left(a\right)\)
Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)
Từ (a) và (b) ta có : \(9m^2-14m-39=0\)
Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)
Phương trình hoành độ giao điểm của \(\left(C_m\right)\) và đường thẳng y = -1 là :
\(x^4-\left(3m+2\right)x^2+3m=-1\Leftrightarrow\left(x^2-1\right)\left(x^2-3m-1\right)=0\)
Đường thẳng y = -1 cắt \(\left(C_m\right)\) tại 4 điểm phân biệt có hoành độ nhỏ hơn 2 khi và chỉ khi :
\(0 < 3m+1 < 4\) và \(3m+1\ne1\)
\(\Leftrightarrow\)\(-\frac{1}{3}< m\)< 1 và \(m\ne0\)
Phương trình hoành độ giao điểm \(3x^2+2mx+3m-4=0\left(1\right)\) với x. Đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác -1
\(\Leftrightarrow\begin{cases}9m^2-36m+48>0\\0.m-1\ne0\end{cases}\) (đúng với mọi m)
Gọi \(x_1;x_2\) là các nghiệm của phương trình (1), ta có : \(\begin{cases}x_1+x_2=-m\\x_1x_2=\frac{3m-4}{3}\end{cases}\) (*)
Giả sử \(A\left(x_1;x_1+m\right);B\left(x_2;x_2+m\right)\)
Khi đó ta có \(OA=\sqrt{x^2_1+\left(x_1+m\right)^2};OA=\sqrt{x^2_2+\left(x_2+m\right)^2}\)
Kết hợp (*) ta được \(OA=OB=\sqrt{x_1^2+x_2^2}\)
Suy ra tam giác OAB cân tại O
Ta có \(AB=\sqrt{2\left(x_1-x_2\right)^2}\). Tam giác OAB đều \(\Leftrightarrow OA^2=AB^2\Leftrightarrow x_1^2+x_2^2=2\left(x_1-x_2\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow m^2-6m+8=0\Leftrightarrow m=2\) hoặc m=4
Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :
\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là
\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)
Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là :
\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)
Dễ thất điểm O không thuộc d nên ABO là một tam giác.
Tam giác ABO vuông tại O khi và chỉ khi :
\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)
Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)
Thay vào trên ta được :
\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)
Vậy \(m=-3\) hoặc \(m=-1\)
Bài 1: Ta có
\(y'=0\Leftrightarrow x[2mx^2-(m+1)]=0\)
\(\Leftrightarrow \left[\begin{matrix} x=0\\ 2mx^2-(m+1)=0(1)\end{matrix}\right.\)
Một điểm nằm trên trục tọa độ thì tung độ hoặc hoành độ phải bằng $0$. Do đó yêu cầu đề bài được đáp ứng khi $y'=0$ có nghiệm $x=0$ hoặc nếu $x$ khác $0$ thì tung độ tương ứng phải bằng $0$
+) Nếu \(m=0\) : $(1)$ vô nghiệm . $y'=0$ có nghiệm duy nhất $x=0$ (thỏa mãn)
+) Nếu $m=-1$ : $(1)$ có nghiệm $x=0$ (thỏa mãn)
+) Nếu $-1< m< 0$. Từ \((1)\Rightarrow x^2=\frac{m+1}{2m}< 0\) (vô lý) nên $(1)$ vô nghiệm. $y'=0$ có nghiệm duy nhất $x=0$ (thỏa mãn)
+) Nếu \(m>0\) hoặc \(m< -1\)
$(1)$ có 2 nghiệm \(x=\pm \sqrt{\frac{m+1}{2m}}\neq 0\)
\(\Rightarrow y=m(\pm \sqrt{\frac{m+1}{2m}})^4-(m+1)(\pm \sqrt{\frac{m+1}{2m}})^2+(m+1)\)
\(=\frac{(m+1)^2}{4m}-\frac{(m+1)^2}{2m}+(m+1)\)
\(=(m+1)-\frac{(m+1)^2}{4m}=0\)
\(\Leftrightarrow \left[\begin{matrix} m=-1\\ m=\frac{1}{3}\end{matrix}\right.\) . Vì \(\Rightarrow m=\frac{1}{3}\)
Vậy \(-1\leq m\leq 1 \text{or m}=\frac{1}{3}\)
Bài 2:
Ta có: \(y'=4x^3+4mx=0\Leftrightarrow x(x^2+m)=0\)
Nếu $m\geq 0$. PT $y'=0$ có duy nhất nghiệm $x=0$. Ta chỉ thu được 1 điểm cực trị (loại)
Nếu $m<0$. Ngoài $x=0$ pt $y'=0$ còn có 2 nghiệm \(x=\pm \sqrt{-m}\neq 0\)
(thu được 3 cực trị)
Khi đó:
\(y=(\pm \sqrt{-m})^4+2m(\pm \sqrt{-m})^2+4=m^2-2m^2+4=4-m^2\)
Để điểm cực trị nằm trên trục tọa độ thì \(y=0\Leftrightarrow 4-m^2=0\Leftrightarrow m=-2\) (do $m< 0$)
Vậy \(m=-2\)
\(\frac{2x-1}{-x-1}=-2x+m\Leftrightarrow\begin{cases}2x^2-\left(m+4\right)x+1=0\left(1\right)\\x\ne1\end{cases}\)
Đường thẳng y=-2x+m cắt (C) tại 2 điểm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 1
\(\Leftrightarrow\begin{cases}\left(m+4\right)^2-8\left(m+1\right)>0\\-1\ne0\end{cases}\) \(\Leftrightarrow m^2+8>0\) với mọi m
Vậy với mọi m, đường thẳng y=x+m luôn cắt đồ thị C tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1\ne x_2\)
Theo Viet : \(x_1+x_2=\frac{4+m}{2},x_1.x_2=\frac{m+1}{2}\)
\(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\Leftrightarrow\frac{m+1}{2}-4\left(\frac{m+4}{2}\right)=\frac{7}{2}\Leftrightarrow m=-\frac{22}{3}\)
Vậy \(m=-\frac{22}{3}\) thì đường thẳng \(y=-2x+m\) cắt đồ thì (C) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\)
Lời giải:
Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)
Do đó diện tích xq của hình nón là:
\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)
Đáp án C
+ Phương trình hoành độ giao điểm của (C) và đường thẳng d:
=x4- (2m-1) x2+2m = 2 hay x4- (2m-1) x2+2m -2=0
Suy ra x2= 1 hoặc x2= 2m-2 (1)
+ Đường thẳng d cắt C tại bốn điểm phân biệt có hoành độ nhỏ hơn 3 khi và chỉ khi phương trình (1) có hai nghiệm phân biệt nhỏ hơn 3.
Do đó có 4 giá trị nguyên của m thỏa mãn đầu bài.
Chọn D.