Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Hỏi h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

Chú ý: Một số em có thể sẽ quên mất khi xét số nghiệm của phương trình f(x) = 0 có 3 nghiệm phân biệt mà không loại  nghiệm kép dẫn đến chọn nhầm đáp án C là sai.

12 tháng 4 2018

Dựa vào hình vẽ, ta thấy (1) có 3 nghiệm phân biệt; (2) có 2 nghiệm phân biệt; (3) có 3 nghiệm phân biệt và các nghiệm trên đều là nghiệm đơn hoặc bội lẻ

Vậy hàm số đã cho có 3 + 3 + 2 + 3 = 11 điểm cực trị. Chọn B

4 tháng 1 2020

Đáp án D.

10 tháng 5 2019

Chọn D.

Phương pháp:

Xác định điểm trên đồ thị hàm số mà tại đó có đạo hàm đổi dấu.

Cách giải:

Quan sát đồ thị hàm số ta thấy, hàm số đạt cực trị tại 2 điểm x = 0, x = 1

1 tháng 10 2019

Chọn C.

23 tháng 10 2018

2 tháng 11 2017


20 tháng 1 2017

Đáp án B

Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.

Cách giải: 

Xét giao điểm của đồ  thị  hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ  thị  cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy  => phương trình g(x) = 0 không có nghiệm

13 tháng 12 2017

Xét  

Vì đường thẳng y=x-1 cắt đồ thị f '(x) tại 4 điểm có hoành độ x=-1, x=1, x=2, x=3

Suy ra g(x) có ba điểm cực trị là x=-1, x=1, x=2, x=3

Theo giả thiết  có nên g(x)=0 có hai nghiệm phân biệt (là nghiệm đơn hoặc bội lẻ). Vậy hàm số y=|g(x)| có tổng cộng 3 + 2 = 5 điểm cực trị.

Chọn đáp án B.

*Chú ý số điểm cực trị của hàm số y=|g(x)| bằng tổng số điểm cực trị của f(x) và số nghiệm đơn (hoặc bội lẻ) của phương trình f(x)=0

Chọn đáp án B.

2 tháng 5 2019

Đáp án D.

Đồ thị hàm số y = f(x) có dạng:

Đồ thị hàm số y = |f(x)| có dạng:

→ Hàm số y = |f(x)| có 3 điểm cực trị.