K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Xét  

Vì đường thẳng y=x-1 cắt đồ thị f '(x) tại 4 điểm có hoành độ x=-1, x=1, x=2, x=3

Suy ra g(x) có ba điểm cực trị là x=-1, x=1, x=2, x=3

Theo giả thiết  có nên g(x)=0 có hai nghiệm phân biệt (là nghiệm đơn hoặc bội lẻ). Vậy hàm số y=|g(x)| có tổng cộng 3 + 2 = 5 điểm cực trị.

Chọn đáp án B.

*Chú ý số điểm cực trị của hàm số y=|g(x)| bằng tổng số điểm cực trị của f(x) và số nghiệm đơn (hoặc bội lẻ) của phương trình f(x)=0

Chọn đáp án B.

31 tháng 1 2019

14 tháng 7 2018

Đáp án D

Phương pháp : Nhận xét : f’(x – 2) = f’(x)

Cách giải : Ta có : f’(x – 2) = (x – 2)’. f’(x) = f’(x) Đồ thị hàm số y = f’(x) có hình dạng tương tự như trên.

Đồ thị hàm số y = f(x – 2)có 3 điểm cực trị => Đồ thị hàm số y = f(x) cũng có 3 điểm cực trị

20 tháng 1 2017

Đáp án B

Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.

Cách giải: 

Xét giao điểm của đồ  thị  hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ  thị  cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy  => phương trình g(x) = 0 không có nghiệm

30 tháng 6 2019

2 tháng 11 2017


19 tháng 4 2017

Đáp án B

f'(x) đổi dấu 1 lần, suy ra đồ thị hàm số f(x) có 1 điểm cực trị.

15 tháng 12 2017

10 tháng 11 2018

Chọn đáp án B.

2 tháng 5 2019

Đáp án D.

Đồ thị hàm số y = f(x) có dạng:

Đồ thị hàm số y = |f(x)| có dạng:

→ Hàm số y = |f(x)| có 3 điểm cực trị.