Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B.
Từ đồ thị của hàm số y , = f ( x ) ta có bảng biến thiên của hàm số y = f ( x ) như hình vẽ:
Từ bảng biến thiên ta có: M = m a x { f ( - 1 ) ; f ( 1 ) ; f ( 2 ) }
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
Đáp án B
Bảng biến thiên của hàm số trên 0 ; 9 2 có dạng như hình vẽ dưới đây.
Do đó GTLN của hàm số là f(0);f(2) hoặc f 9 2 ; GTNN của hàm số là f(1) hoặc f(4)
Mặt khác f 1 = f 2 - ∫ 1 2 f ' x d x ; f 4 = f 2 - ∫ 2 4 f ' x d x
Dựa vào hình vẽ ta có: ∫ 2 4 f ' x d x > ∫ 1 2 f ' x d x ⇒ f 4 < f 1 (loại C và D)
Mặt khác f 9 2 = f 4 + ∫ 4 9 2 f ' x d x ; f 0 = f 1 + ∫ 0 1 f ' x d x
Dựa vào hình vẽ ta có: ∫ 0 1 f ' x d x > ∫ 4 9 2 f ' x d x f 1 > f 4 ⇒ f 0 > f 9 2 .
Nhận thấy trên đoạn [-2;2]
● Đồ thị hàm số có điểm thấp nhất có tọa độ (-2;-5) và (1;-5)
=> giá trị nhỏ nhất của hàm số này trên đoạn [-2;2] bằng - 5
● Đồ thị hàm số có điểm cao nhất có tọa độ (-1;1) và (-2;1)
=> giá trị lớn nhất của hàm số này trên đoạn [-2;2] bằng -1.
Chọn B.
Đáp án D
Hàm số y = f ( x ) đạt cực tiểu tại x 0 = 0
Hàm số y = f ( x ) có ba điểm cực trị.
Phương trình f ( x ) = 0 có 4 nghiệm phân biệt
Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Đáp án B
f x đạt giá trị lớn nhất tại f − 1 ; f 2 hoặc f x i mà f ' x i = 0 .