K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Ta có : \(y'=-\frac{1}{\left(x-1\right)^2};x\ne1\)

Giao điểm cả 2 đường tiệm cận là I(1;2)

Gọi \(M\left(x_0;2+\frac{1}{x_0-1}\right)\) là tiếp điểm. Khi đó hệ số góc của tiếp tuyến \(\Delta\) tại M là \(k_1=-\frac{1}{\left(x_0-1\right)^2}\)

Ta có \(\overrightarrow{IM}\left(x_0-1;\frac{1}{x_0-1}\right)\) nên đường thẳng IM có hệ số góc \(k_2=\frac{1}{\left(x_0-1\right)^2}\)

\(IM\perp\Delta\Leftrightarrow k_1k_2=-1\Leftrightarrow x_0=0;x_0=2\)

Vậy có 2 điểm cần tìm là : \(M_1\left(0;1\right);M_2\left(2;3\right)\)

21 tháng 5 2020

Tại s k2 có hệ số góc là 1/(x-1)^2 vậy

3 tháng 5 2016

a) (C) có 2 tiệm cận xiên là x = -1 và y = x + 1

I là tâm đối xứng \(\Rightarrow I\left(-1;0\right)\) (I là giao của 2 tiệm cận)

Xét \(M\left(x_0;f\left(x_0\right)\right)\in\left(C\right)\). Tiếp tuyến \(\Delta\) tại M của (C) :

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=\frac{x_0^2+2x_0}{\left(x_0+1\right)^2}\left(x-x_0\right)+\frac{x^2_0+2x_0+2}{x_0+1}\)

 
\(\Delta\) cắt tiệm cận đứng tại \(A\left(-1;\frac{2}{x_0+1}\right)\) và cắt tiệm cận xiên tại \(B\left(2x_0+1;2x_0+2\right)\)
\(\begin{cases}\frac{x_A+x_B}{2}=x_0=x_M\\\frac{y_A+y_B}{2}=\frac{x_0^2+2x_0+2}{x_0+1}=y_M\end{cases}\)\(\Rightarrow\) M là trung điểm của AB
Gọi H là hình chiếu của B lên IA
\(\Rightarrow BH=2\left|x_0+1\right|\) mà \(IA=\frac{2}{\left|x_0+1\right|}\) 
suy ra \(S_{\Delta ABI}=\frac{1}{2}BH.IA=2\) => điều cần chứng minh
 
b) Ta có : \(AB^2=4\left[2\left(x+1\right)^2+\frac{1}{\left(x+1\right)^2}-2\right]\ge4\left(2\sqrt{2}-2\right)\Rightarrow AB\ge2\sqrt{2\sqrt{2}-2}\)
Đẳng thức xảy ra \(\Leftrightarrow2\left(x_0+1\right)^4=1\Leftrightarrow x_0=-1\pm\frac{1}{\sqrt[4]{2}}\)
 
c) Xét \(M\left(x_0;y_0\right)\in\left(C\right)\). Tiếp tuyến tại M vuông góc với tiệm cận xiên
\(\Leftrightarrow y'\left(x\right)=-1\Leftrightarrow\frac{x^2_0+2x_0}{\left(x_0+1\right)^2}=-1\Leftrightarrow2x^2_0+4x_0+1=0\Leftrightarrow x_0=\frac{-2\pm\sqrt{2}}{2}\)
Vậy \(M\left(\frac{-2\pm\sqrt{2}}{2};\pm\frac{3\sqrt{2}}{2}\right)\)
 
28 tháng 2 2017

+Đồ thị hàm số đã cho có TCĐ là x= 1 và TCN là y= 2;  giao điểm của hai tiệm cận là

 I (1; 2) .

 Lấy điểm  M ( a ;   b )   ∈ C ⇒ b = 2 a - 1 a - 1   ( a > 1 ) .

+ Phương trình tiếp tuyến của (C )  tại M là  y = - 1 ( a - 1 ) 2 ( x - a ) + 2 a - 1 a - 1

+ Phương trình  đường thẳng MI  là  y = 1 ( a - 1 ) 2 ( x - 1 ) + 2

+ Tiếp tuyến tại M vuông góc với MI  nên ta có

- 1 ( a - 1 ) 2 . 1 ( a - 1 ) 2 = - 1 ⇔

Vì yêu cầu hoành độ và tung độ của M nguyên dương nên điểm cần tìm là  M( 2; 3).

Chọn D.

29 tháng 4 2016

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)

 

Tham khảo:

undefined

undefined

undefined

31 tháng 3 2017

a) y=x+3x+1y=x+3x+1 có tập xác định : R\{-1}

y′=−2(x+1)2<0,∀x≠−1y′=−2(x+1)2<0,∀x≠−1

Tiệm cận đứng: x = -1

Tiệm cận ngang: y = 1

Bảng biến thiên:

Đồ thị hàm số:

b) Xét phương trình có nghiệm là hoành độ giao điểm của (C) và đường thẳng (d): y = 2x + m

(1)

x+3x+1=2x+m⇔x+3=(2x+m)(x+1)⇔2x2+(m+1)x+m−3=0,x≠−1x+3x+1=2x+m⇔x+3=(2x+m)(x+1)⇔2x2+(m+1)x+m−3=0,x≠−1

Δ = (m+1)2 – 4.2(m-3) = m2 – 6m + 25 = (m-3)2 + 16> 0, Δm, nên (1) luôn có hai nghiệm phân biệt khác -1.

Vậy (d) luôn cắt (C) tại hai điểm phân biệt M, N (hoành độ của M, N chính là nghiệm của (1)).

 

 

29 tháng 5 2017

TenAnh1 C = (-4.24, -6.16) C = (-4.24, -6.16) C = (-4.24, -6.16) D = (11.12, -6.16) D = (11.12, -6.16) D = (11.12, -6.16) E = (-4.28, -6.08) E = (-4.28, -6.08) E = (-4.28, -6.08) F = (11.08, -6.08) F = (11.08, -6.08) F = (11.08, -6.08)
Vậy \(Min_{MN}=2\sqrt{3}\) khi \(m=3\).

8 tháng 4 2016

Ta có \(M\left(-1;-2\right)\)

Phương trình của (C) tại M là \(\Delta:y=y'\left(-1\right)\left(x+1\right)-2\)

                                     hay \(\Delta:y=9x+7\)

\(\Delta\) // d \(\Leftrightarrow\begin{cases}m^2+5=9\\3m+1\ne7\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm2\\m\ne2\end{cases}\) \(\Leftrightarrow m=-2\)

 

22 tháng 7 2019

Chọn A

 Phương trình tiếp tuyến tại điểm M là d: 

Đồ thị có hai tiệm cận có phương trình lần lượt là  d 1 : x = 1;  d 2 : y = 2

d cắt d 1  tại điểm 

d cắt d 2  tại điểm Q(2a-1;2),  d 1  cắt  d 2  tại điểm I(1;2)

Ta có