Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+TXĐ: X\(\in\)R
+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)
+y''=6(x-1)=> y' = 0 khi x = 1;y=2
+
x | -\(\infty\) 0 1 2 +\(\infty\) |
y' | + 0 - - 0 + |
y |
Đáp án A
Có y ' = m 2 − m − 2 x + m 2 . Hàm số nghịch biến trên − 1 ; + ∞ ⇔ m 2 − m − 2 < 0 ⇔ m ∈ − 2 ; 1
Đáp án A.
Tập xác định: D = ℝ \ − m . Ta có y ' = m 2 − 4 x + m 2 .
Để hàm số nghịch biến trên khoảng − ∞ ; 1 thì ta phải có
m 2 − 4 < 0 1 ≤ − m ⇔ − 2 < m < 2 m ≤ − 1 ⇔ − 2 < m ≤ − 1
Lưu ý: Với cách cho đáp án như trong câu hỏi này, ta có làm như sau:
- Thử với m = − 2 . Khi đó y = − 2 x + 4 x − 2 = − 2 x − 2 x − 2 = − 2 . Suy ra với m = − 2 thì hàm số không nghịch biến trên − ∞ ; 1 . Từ đó loại được đáp án B và C.
- Thử với m = − 1 . Khi đó y = − x + 4 x − 1 . Ta có y ' = − 3 x − 1 2 < 0 ∀ x ≠ 1 .
Suy ra hàm số nghịch biến trên các khoảng − ∞ ; 1 và 1 ; + ∞ . Vậy A là đáp án đúng.
Đáp án là C
Tập xác định : D = R \{m}
Ta có : y ' = 1 − m x − m 2
Hàm số nghịch biến trên khoảng (−¥;2) khi và chỉ khi y' <0, "x < 2, tức là : 1 − m < 0 m ≥ 2 ⇔ m ≥ 2 . Vậy tập giá trị m cần tìm là [2; + ∞ )