Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Có đúng 1 nghiệm \(3\le\) => nghiệm còn lại lớn hơn 3
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x_1-3\right)\left(x_2-3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+3\right)^2-4\left(2m+2\right)>0\\x_1x_2-3\left(x_1+x_2\right)+9\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+1>0\\2m+2-3\left(m+3\right)+9\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2>0\Rightarrow m\ne1\\-m+2\le0\Leftrightarrow m\ge2\end{matrix}\right.\)
\(\Rightarrow m\in[2;+\infty)\)
Bài 2:
Câu này lm ko bt có đúng ko =.=
\(\Delta'=4-3m-6=-2-3m\)
Để pt có 2 n0 pb<=> -2-3m> 0<=> m<-2/3
\(\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\left(5-x_1\right)\left(5-x_2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\25-5\left(x_1+x_2\right)+x_1x_2\ge0\end{matrix}\right.\)
Dùng Vi-ét để tìm nốt
TH1: m + 1 = 0 <=> m = -1 thay vào bpt ta có: 4 > 0 với mọi số thực x
=> m = - 1 thỏa mãn
TH2: m \(\ne\)-1
bpt có tập nghiệm S = R
<=> \(\hept{\begin{cases}\Delta'\le0\\m+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m+1\right)^2-4\left(m+1\right)\le0\\m>-1\end{cases}}\)
<=> \(\hept{\begin{cases}\left(m+1\right)\left(m-3\right)\le0\\m>-1\end{cases}}\Leftrightarrow-1< m\le3\)
Kết hợp 2 TH: ta có: \(-1\le m\le3\) thì bpt có tập nghiệm: S = R
Đặt ( m + 1 ).x2 - 2. ( m-1 ) .x + 4 \(\ge\)0 ( 1 )
+) TH1 : m+ 1 = 0 <=> m =-1 .Bất phương trình ( 1 ) trở thành 4 \(\ge\)0 \(\forall x\inℝ\)( luôn đúng ) ( *)
+) TH2 : m + 1 \(\ne\)0 <=> m \(\ne\)-1 .Bất phương trình ( 1 ) có tập nghiệm \(S=ℝ\)
<=> \(\hept{\begin{cases}a>0\\\Delta'\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m+1>0\\\Delta'=m^2-2m-3\le0\end{cases}\Leftrightarrow}-1< m\le3\left(^∗^∗\right)}\)
Từ ( *) và ( **) ta suy ra : \(-1\le m\le3\)
Đáp án C