K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì MNPQ là hình chữ nhật nên ∠ (xOy) = 1v.

16 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

MNPQ là hình vuông ⇔ ∠ (xOy) = 1v và AB = CD.

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMRa) tam giác OAM = tam giác OBMb)AM = BM; OM \(\perp\)ABc) OM là đg trung trực của ABd) Trên tia Ot lấy điểm N. CMR: NA = NB2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMRa) AB // KE             b) góc ABC = góc KEC; BC...
Đọc tiếp

1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA. Vẽ đoạn thẳng AB cắt Ot tại M.CMR

a) tam giác OAM = tam giác OBM

b)AM = BM; OM \(\perp\)AB

c) OM là đg trung trực của AB

d) Trên tia Ot lấy điểm N. CMR: NA = NB

2.Cho tam giác ABC vuống tại A trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đg thẳng AC. CMR

a) AB // KE             b) góc ABC = góc KEC; BC = CE

3.Cho góc nhọn xOy. Trên tia Ox lấy 2 điểm A, C. Trên tia Oy lấy 2 điểm B,D sao cho OA = OB, AC = BD

a)CMR: AD = BC

b) Gọi E là giao điểm AD và BC. CMR tam giác EAC = tam giác EBD

c) CMR: OE là phân giác của góc xOy, OE \(\perp\)CD

4.Cho tam giác ABC có góc B = 90, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA

a) Tính góc BCE                                             b) CMR BE//AC

1
29 tháng 12 2018

câu 1

a) xét tam giác OAM và tam giác OBM có:

OB=OA(gt)

góc BOM= góc MOA(Ot là tia phân giác của góc xOy)

OM:cạnh chung

tam giác OAM= tam giác OBM(c.g.c)

b)vì tam giác OAM= tam giác OBM(câu a)

AM=BM(2 cạnh tương ứng)

góc OMB= góc OMA(2 góc tương ứng)

Mà hóc OMB+góc OMA=180o(kề bù)

góc OMB=góc OMA=180o:2=90o

OM vuông góc với AB

c)vì MA=MB(câu b)

Mà OM vuông góc với AB(câu b)

OM là đường trung trực của AB

d)xét tam giác NBM và tam giác NAM có

AM=BM(câu b)

góc BMN= góc AMN(=90o)

MN:cạnh chung

tam giác NBM= tam giác NAM(c.g.c)

NA=NB(2 cạnh tướng ứng)

5 tháng 1 2018

b) Giả sử MNPQ là hình chữ nhật 

=> ^QMN=90do HAY QM vuong goc voi MN

Lai co MN//BC

=> BC vuong goc voi QM

    Ma QM //AO

=> AO vuong goc voi BC

=> O thuoc duong cao ke tu A den BC

Goi giao diem cua AO VA BC LA H 

Để SMNPQ=SABC

=> MQ.QP=(BC.AH)/2

Mà QP=BC/2

=> MQ=AH

Ma MQ=AH/2 

=> AH=AO/2

Mà AO hay AH vuong goc voi BC

=> BC la trung truc cua AO .

Vay de tu giac MNPQ vua la HCN vua co dien h =tam giac ABC thi BC phai la trung truc cua AO

5 tháng 1 2018

a,Do tia AO nằm giữa tia AB và tia AC(gt)

Gọi O là điểm nằm giữa đoạn thẳng BC

sao cho BO< OC

M,N,P,Q lần lượt là trung điểm của OB,OC,AC,AB (gt)

=>BM=MO;ON=NC;CP=PA;AQ=QB

Vậy ta có:PQ là đường trung bình của tam giác ABC nên PQ//=1/2 BC (1)

Tương tự:

PN là đường trung bình của tam giác ACO nên PN//=1/2 AO (2)

QM là đường trung bình của tam giác ABO nên QM//=1/2 AO (3)

Từ (2),(3) suy ra:

PN//=QM=1/2 OA ( t/c 2 đường thẳng//) (4)

Do đó PQ//=MN

=> Tứ giác MNPQ là hình bình hành

b,theo cmt : PN//=QM=1/2 OA 

Mặt khác, AO là cạnh đối diện của 2 góc B và góc C

Từ đó=>góc B=góc C

=> tam giác ABC cân tại A

=>O là trung điểm của BC

=>AO _|_BC nên góc AOB=góc AOC=90°

=> 3 điểm B,O,C thẳng hàng (vì BOC=180°=góc AOB+góc AOC)

M,N là trung điểm của OB và OC(gt)

nên B,M,O,N,C thẳng hàng.

=>QM_|_BC và PN_|_BC

Hay góc QMN=góc PNM=1 vuông (5)

Theo (1) PQ//BC

=>PQ_|_QM ; PQ_|_PN

Hay góc MQP=góc NPQ=1 vuông (6)

Từ (5),(6) suy ra:

Tứ giác MNPQ là hình chữ nhật (đpcm)

17 tháng 8 2016

nhìn khó phết