Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
ta có SA= SB(t/c tiếp tuyến cắt nhau)
nên tam giác SAB cân ở S
do đó SO vừa là phân giác vừa là đường cao nên SO vuông góc AB
I là trung điểm của MN nên OI vuông góc MN
do đó góc SHE=SIE = 90 độ
hai điểm H và I cùng nhìn đoạn SE dưới 1 góc vuông nên tứ giác IHSE nội tiếp
b) SOI đồng dạng với EOH vì có O chung
$\widehat{SHE}=\widehat{SIE}$ =90 độ chứng minh trên
suy ra $\dfrac{OI}{OH}$ = $\dfrac{OS}{OE}$
mà OH.OS = OB^2 = R^2(hệ thức lượng trong tam giác vuông SOB
nên OI.OE=R^2 (DPCM)
\(a.\Delta MAD\&\Delta MBA:\widehat{MAD}=\widehat{MBA}\left(=\frac{1}{2}\widebat{AD}\right);\widehat{AMB}=\widehat{AMD}\Rightarrow\Delta MAD~\Delta MBA\left(g.g\right)\Rightarrow MD^2=MB.MC\)b.Do I là trung điểm dây CD nên OI vuông góc CD mà ^SBO=90=>S;B;O;I cùng thuộc một đtròn
Mà dễ thấy S;B;A;O cùng thuộc một đtròn nên S;B;I;O;A cùng thuộc một đtròn
Do đó ^SIA=^SBA,^SIB=^SAB.Mà ^SAB=^SBA(do SA,SB là tiếp tuyến (O))=>^SIA=^SIB=>Đpcm
c.^DIE=^DCA=^DBE=>B;D;E;I cùng thuộc một đtròn=>^DEB=^DIB=^SAB=>DE//SA=>DE//BC
d.
a, S A O ^ + S B O ^ = 90 0 + 90 0 = 180 0
Tứ giác OASB nội tiếp
b, M A C ^ = C B A ^ = 1 2 s đ C A ⏜
=> ∆MAC:∆MBA(g.g)
Từ đó suy ra M A 2 = M B . M C
c, Có M A 2 = M B . M C mà MA = MS => S M M S = M C M S
Chứng minh được ∆MSB:∆MCS
=> M B S ^ = C S M ^ hay M B S ^ = C S A ^
d, Chứng minh N A S ^ = M B S ^ (Vì cùng = C S A ^ )
=> Tứ giác NAOB là từ giác nội tiếp
Chứng minh được A N O ^ = O N B ^
=> ĐPCM