K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Kẻ OH vuông góc với xy suy ra OH ≤ OA . Mặt khác A nằm trong đường tròn (O;R) nên OA ≤ R

10 tháng 10 2021

Tham khảo:

Kẻ OH vuông góc với xy suy ra OH ≤ OA . Mặt khác A nằm trong đường tròn (O;R) nên OA ≤ R

10 tháng 7 2021

Kẻ OH vuông góc với xy suy ra OH ≤ OA . Mặt khác A nằm trong đường tròn (O;R) nên OA ≤ R

10 tháng 7 2021

cảm ơn bạn nhé

 

 

3 tháng 11 2016

a)
ta có SA= SB(t/c tiếp tuyến cắt nhau)
nên tam giác SAB cân ở S
do đó SO vừa là phân giác vừa là đường cao nên SO vuông góc AB
I là trung điểm của MN nên OI vuông góc MN
do đó góc SHE=SIE = 90 độ
hai điểm H và I cùng nhìn đoạn SE dưới 1 góc vuông nên tứ giác IHSE nội tiếp

b) SOI đồng dạng với EOH vì có O chung
$\widehat{SHE}=\widehat{SIE}$ =90 độ chứng minh trên
suy ra $\dfrac{OI}{OH}$ = $\dfrac{OS}{OE}$
mà OH.OS = OB^2 = R^2(hệ thức lượng trong tam giác vuông SOB
nên OI.OE=R^2 (DPCM)

28 tháng 2 2019

E C A D B

Ta có: tỨ giác OCEA nội tiếp

=> \(\widehat{OCA}=\widehat{OEA}\)(1)

Vì OC=OB 

=> Tam giác OBC cân 

=> \(\widehat{OCA}=\widehat{OCB}=\widehat{OBC}\)(2)

Tứ giác ODAB nội tiếp

=> \(\widehat{ODA}=\widehat{OBC}\)( cùng bù với góc OBA) (3)

Từ (1), (2), (3)

=> \(\widehat{ODA}=\widehat{OEA}\)

=> Tam giác ODE cân có OA là đươngcao

=> OA là đường trung tuyến

=> A là trung điểm của DE

28 tháng 1 2022

Bạn tự vẽ hình.

a, \(xy\) cách \(\left(O\right)\) một khoảng \(OK=a\)

Mà \(OK< R\)

=> \(K\in xy\) và  \(xy\) cắt \(\left(O\right)\) tại hai điểm D và E

b, \(OK\perp xy\) đồng thời \(OK\perp AK\) => \(\widehat{AKO}=90^o\) => K thuộc đường tròn đường kính AO (1)

AC, AB là 2 tiếp tuyến => \(\hept{\begin{cases}AC\perp CO\\AB\perp BO\end{cases}}\)=> \(\hept{\begin{cases}\widehat{ACO}=90^o\\\widehat{ABO}=90^o\end{cases}}\)

=> B, C thuộc đường kính BC (2)

(1); (2) => K, B, C thuộc đường kính BC

Hay O, A, B, C, K cùng thuộc đường kính BC

c, \(AK\perp KO\)

=> \(\widehat{AKS}=90^o\)

=> K thuộc đường tròn đường kính AS (3)

=> \(AO\perp BC\) tại M

=> \(\widehat{AMS}=90^o\)

=> M thuộc đường tròn đường kính AS (4)

(3); (4) => AMKS nội tiếp

a: Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm

MB là tiếp tuyến có B là tiếp điểm

Do đó: MA=MB

Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

Suy ra: \(\widehat{MAB}=\widehat{MBA}\)

Xét ΔDAB vuông tại D và ΔEBA vuông tại E có 

BA chung

\(\widehat{DBA}=\widehat{EAB}\)

Do đó: ΔDAB=ΔEBA

Suy ra: \(\widehat{DAB}=\widehat{EBA}\)

hay \(\widehat{HAB}=\widehat{HBA}\)

Xét ΔHBA có \(\widehat{HAB}=\widehat{HBA}\)

nên ΔHBA cân tại H

Suy ra: HA=HB

hay H nằm trên đường trung trực của AB(1)

Ta có:MA=MB

nên M nằm trên đường trung trực của AB(2)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(3)

Từ (1), (2) và (3) suy ra O,H,M thẳng hàng