K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Đáp án A

Đường thẳng d và đoạn thẳng AB có điểm chung khi và chỉ khi 2 điểm A và B nằm về hai phía của đường thẳng d hoặc có điểm thuộc đường thẳng d.

Nên ( 4- 14+m) ( -12-28+ m)  ≤ 0

Hay  10 ≤ m ≤ 40

1 tháng 4 2018

mk chỉ cho cách lm ; bn tự lm cho bt nha

câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)

tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)

câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)

là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)

Câu 1: Tọa độ giao điểm của (P): \(y=x^{^{ }2}-4x\) với đường thẳng \(d:\) \(y=-x-2\) là: A. \(M\left(-1;-1\right),N\left(-2;0\right)\) B. \(M\left(1;-3\right),N\left(2;-4\right)\) C. \(M\left(0;-2\right),N\left(2;-4\right)\) D. \(M\left(-3;1\right),N\left(3;-5\right)\) Câu 2: Đường thẳng nào sau đây tiếp xúc với (P): \(y=2x^2-5x+3\)? A. \(y=x+2\) B. \(y=-x-1\) C. \(y=x+3\) D. \(y=-x+1\) Câu 3: Parabol (P): \(y=x^2+4x+4\) có số điểm chung với trục...
Đọc tiếp

Câu 1: Tọa độ giao điểm của (P): \(y=x^{^{ }2}-4x\) với đường thẳng \(d:\) \(y=-x-2\) là:

A. \(M\left(-1;-1\right),N\left(-2;0\right)\)

B. \(M\left(1;-3\right),N\left(2;-4\right)\)

C. \(M\left(0;-2\right),N\left(2;-4\right)\)

D. \(M\left(-3;1\right),N\left(3;-5\right)\)

Câu 2: Đường thẳng nào sau đây tiếp xúc với (P): \(y=2x^2-5x+3\)?

A. \(y=x+2\)

B. \(y=-x-1\)

C. \(y=x+3\)

D. \(y=-x+1\)

Câu 3: Parabol (P): \(y=x^2+4x+4\) có số điểm chung với trục hoành là:

A. 0

B. 1

C. 2

D. 3

Câu 4: Giao điểm của hai parabol \(y=x^2-4\)\(y=14-x^2\) là;

A. \(\left(2;10\right)\)\(\left(-2;10\right)\)

B. \(\left(\sqrt{14};10\right)\)\(\left(-14;10\right)\)

C. \(\left(3;5\right)\)\(\left(-3;5\right)\)

D. \(\left(\sqrt{18};14\right)\)\(\left(-\sqrt{18};14\right)\)

Câu 5:Cho parabol (P): \(y=x^2-2x+m-1\). Tìm tất cả các giá trị thực của m để parabol không cắt Ox.

A. \(m< 2\)

B. \(m>2\)

C. \(m\ge2\)

D. \(m\le2\)

1
26 tháng 10 2018

Câu 1:

Phương trình hoành độ giao điểm của (P) và (d):

\(x^2-4x=-x-2\)

\(x^2-3x+2=0\)

\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Với x= 2 ⇒ y=-2 -2 = -4

Với x= 1 ⇒ y = -1 -2 = -3

Vậy chọn B: M( 1; -3) và N(2;-4)

Câu 2:

Vì (d) tiếp xúc với (P)

nên Δ = 0 ⇒ phương trình có một nghiệm kép

Vậy chọn D: y= -x +1

Câu 3:

(P) : y =\(x^2+4x+4\)

Để (P) có điểm chung với trục hoành ⇔ y =0

Vậy chọn B : 1

Câu 4:

Phương trình hoành độ giao điểm của hai parabol:

\(x^2-4=14-x^2\)

\(2x^2-18=0\)

\(\left[{}\begin{matrix}x=3\Rightarrow y=14-3^2=5\\x=-3\Rightarrow y=14-\left(-3\right)^2=5\end{matrix}\right.\)

Vậy chọn C : (3;5) và (-3;5)

Câu 5: (P) : y= \(x^2-2x+m-1\)

Để (P) không cắt Ox

⇔ Δ < 0

\(b^2-4ac< 0\)

\(\left(-2\right)^2-4\left(m-1\right)< 0\)

⇔ 4 - 4m +4 < 0

⇔ -4m < -8

⇔ m > 2

Vậy chọn B : m> 2

2 tháng 4 2016

Xét điểm \(B\left(3+t;-2t\right)\in d_2\). Lấy điểm A sao cho M(1;2) là trung điểm của AB. Khi đó \(A\left(1-t;4+2t\right)\) và 

\(A\in d_1\Leftrightarrow\frac{1-t-3}{3}=\frac{4+2t}{-1}\Leftrightarrow t=-2\)

Do đó B(1;4) và đường thẳng \(\Delta\) cần tìm có phương trình x=1

14 tháng 12 2018

bài 2)

xét \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-4\overrightarrow{OD}=2\left(\overrightarrow{OA}+\overrightarrow{OD}\right)+\left(\overrightarrow{OB}-\overrightarrow{OD}\right)+\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\)

\(=2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}\) ( Vì M là trung điểm của BC )

\(=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\) ( Vì D là trung điểm của AM )

=> đpcm

Câu 4:

\(\overrightarrow{AB}=\left(-6;-2\right)\)

\(\overrightarrow{AH}=\left(m+1;m+1\right)\)

Để A,B,H thẳng hàng thì \(\dfrac{m+1}{-6}=\dfrac{m+1}{-2}\)

=>1/-6=1/-2(loại)

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
25 tháng 11 2018

D. k=-\(\dfrac{1}{4}\)