K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

Chọn D.

Chọn ngẫu nhiên 3 đỉnh trong 14 đỉnh của đa giác => có C 14 3 = 364  cách.

Suy ra số phần tử của không gian mẫu là n Ω = 364 .

Gọi X là biến cố “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông

Gọi O là tâm đường tròn ngoại tiếp đa giác đều => có 7 đường kính đi qua O.

Xét một đường kính bất kì, mỗi đỉnh còn lại sẽ tạo với đường kính một tam giác vuông.

Khi đó, số tam giác vuông được tạo ra là 7.(6+6)=84=>n(X)=84.

Vậy xác suất cần tính là 

17 tháng 12 2018

6 tháng 4 2016

Lấy 3 còn lại 9 => nó là tg đều khi 2 đỉnh của tg phải cách nhau qua 3 đỉnh khác

Chia đỉnh đa giác thành 3 nhóm, mỗi nhóm có 4 đỉnh kề nhau, khi lấy 1 đỉnh ở nhóm này làm 1 đỉnh tg thì 2 đỉnh kia sẽ nằm tg ứng trong 2 nhóm còn lại, và số cách lấy 1 đỉnh trong 1 nhóm để làm đỉnh đa giác là 4 => có 4 tg đều có thể lập đc

=> Xác suất = ......

Nếu đã hiểu bài này, b có thể đưa ra 1 công thức: đó là nếu đa giác đều có 3n đỉnh (n thuộc N) thì số tam giác đều như trên là n

Chú ý chỉ là quan tâm đến chữ "đều" mà thôi, từ đó suy ra đc những tính chất mà đề yêu cầu, VD trong bài này, tính chất là mỗi đỉnh của tg đều pải cách nhau qua 3 đỉnh khác của đa giác, từ đó mới suy ra cách chọn ntn.

Còn công thức b co thể xem trên GL về tổ hợp xác suất trong hình học.

4 tháng 4 2019

Chọn C.

 

 

Gọi đa giác đều là A1A2..A100 và O là tâm đường tròn ngoại tiếp tam giác đã cho.

Chọn 3 điểm bất kì ta được 1 tam giác suy ra có: C 100 3  tam giác.

Chia 100 đỉnh thành 2 phần thuộc 2 nửa đường tròn khác nhau

Bước 1: Chọn 1 đỉnh có 100 cách chọn.

Bước 2: Chọn 2 đỉnh còn lại để tạo thành 3 đỉnh của tam giác AiAjAk tù thì 2 đỉnh này phải nằm trên 1 nửa đường trò đã chia.

 Như vậy có: 100 . C 49 2  cách chọn.

Do đó xác xuất cần tìm là: 100 . C 49 2 C 100 2 = 8 11  

8 tháng 6 2019

Đáp án C

Gọi đường tròn (O) là đường tròn ngoại tiếp đa giác. Xét A là 1 đỉnh bất kỳ của đa giác,kẻ đường kính AA’ thì A’ cũng là 1 đỉnh của đa giác. Đường kính AA’ chia (O) thành 2 nửa đường tròn , với mỗi cách chọn ra 2 điểm B và C là 2 đỉnh của đa giác và cùng thuộc 1 nửa đường tròn, ta đường 1 tam giác tù ABC. Khi đó số cách chọn B và C là: 2 C 49 2  

Đa giác có 100 đỉnh nên số đường chéo là đường kính của đường tròn ngoại tiếp đa giác là 50

Do đó, số cách chọn ra 3 đỉnh để lập thành 1 tam giác tù là:  

Không gian mẫu: 

18 tháng 4 2019

12 tháng 7 2018


6 tháng 9 2018

Số phần tử của tập X là  C 4 n 3

Gọi A là biến cố: “Chọn được tam giác vuông”

Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O có 2n đường chéo qua tâm O.

Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm O và một đỉnh trong 4n-2 đỉnh còn lại.

Suy ra số tam giác vuông được tạo thành là C 2 n 1 . C 4 n - 2 1 .

Từ giả thiết suy ra  P A = C 2 n 1 . C 4 n - 2 1 C 4 n 3 = 1 13 ⇒ n = 10

Đáp án C

4 tháng 1 2018

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là: C 2 n 3  

Số đường chéo đi qua tâm là n ⇒ số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2

Số tam giác vuông được tạo thành là  4 C n 2

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 8.

27 tháng 12 2017

Gọi A là biến cố để 3 đỉnh tạo thành một tam giác vuông.

Ta có một đa giác đều 2n cạnh có n đường chéo đi qua tâm.

Ta lấy hai đường chéo thì tạo thành một hình chữ nhật.

Mỗi một hình chữ nhật sẽ có bốn tam giác vuông.

Vậy số tam giác vuông tạo thành từ đa giác đều 2n đỉnh là