K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

ta có AB+AD=AP+PB+AQ+QD=1+1=2 mà AQ+QP+AP=2 
 PB+QD=QP . (*1) 
Trên tia đối của BA lấy E sao cho BE=QD (*2) . 
Từ (*1)(*2) có PB+BE=QP hay PE=QP

Xét 2 tam giác vuông BEC và DQC có :
BC=DC
BE=QD 
 tam giác BEC= tam giác DQC ( 2 cạnh góc vuông )(*****!)  CE=CQ 
xát tam giác QCP và tam giác ECP có :
QC=CE (c/m trên) 
chung cạnh CP 
QP=PE 
 tam giác QCP= tam giác ECP (c.c.c)  góc QCP=góc PCE (***$)
Từ (*****!) có góc QCD= góc BCE mà QCD+QCB=90* nên QCB+BCE=90* hay góc QCE=90* 

1 tháng 4 2017

Hạ CH vuông góc PQ, vẽ hình vông BCEF trên BF lấy M sao cho PM = PQ (1)

Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA

= > BM = 1 - MF = 1 - QA = QD

=> tg vuông BCM = tg vuông DCQ 

Từ 1 và 2 => tg CPM = tg CPQ

PCH = PCB ( 3 ) và CH = CB = 1; PH = PB => QH = BM =>  tg vuông CQH = tg vuông BMC = tg vuông DCQ => DCQ = HCQ (4)

Từ (3) và (4) => PCQ = PCH + HCQ = PCB + DCQ = 90 độ - PCQ => 2 ^ PCQ = 90 độ => PCQ = 40 độ

3 tháng 4 2017

Cảm ơn nhá

Kẻ thêm CH ⊥ PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> Δvuông BCM = Δvuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2)
=> Δ CPM = ΔCPQ ( vì có CP chung; PM = PQ; CM = CQ)
=> ^CPH = ^CPB
=> Δ vuông CPH = Δ vuông CPB
=> ^PCH = ^PCB (3) và CH = CB = 1; PH = PB
=> QH = BM ( vì PQ = PM)
=> Δ vuông CQH = Δ vuông BMC = Δ vuông DCQ
=> ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ
=> 2^PCQ = 90o
=> ^PCQ = 45o