K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2015

hoc24.net giúp em với

30 tháng 3 2016

NX: /a+c-42/>= 0 với mọi x

      /b+a-22/>= 0 với mọi x

      /b+c-40/>= 0 với mọi x

=>  /a+c-42/+/b+a-22/+/b+c-40/>= 0 với mọi x

mà theo đề bài   /a+c-42/+/b+a-22/+/b+c-40/<hoặc=0 

=>   /a+c-42/=0

=> a+c=42(1) 

/b+a-22/=0

=>a+b=22 (2)

/b+c-40/=0

=>b+c=40 (3)

Từ (1)(2)(3)=> a+b+b+c+a+c=104

                    => a+b+c=52(4)

từ(1) và (4)=> b=10

từ(2)và(4)=>c=30

từ(3)và(4)=>a=12

Vậy a=12 ; b=10;c=30

10 tháng 2 2017

3 tháng 4 2016

Vì a.b<0 nên a,b khác dấu

*)Nếu a dương, b âm

mà |a|=|b|5

nên |a|=|-b|5 hay a=-b5

*)Nếu a âm, b dương

mà |a|=|b|5

nên |-a|=|b|5 hay a=b5(loại)

Vậy dấu của a là dương, còn b là âm

vì a*b<0suy ra a,b khác dấu

nếu a dương b âm thì a=-b^5 mà  5 là số lẻ lẽ suy ra -b^5 âm (vô lí)

nếu a âm b dương thì a=b^5 mà b dương nên b dương suy ra bài toán đúng khi a âm ,b dương

vậy dấu của a là - dấu của b là +

24 tháng 1 2016

vì |a|  là một số tự nhiên với mọi a ∈ Z nên từ |a| < 5 ta có:
=> |a|  = {0,1,2,3,4}.
Nghĩa là a ={0,1,-1,2,-2,3,-3,4,-4}. Biểu diễn trên trục số cácc số này đều lớn hơn -5 và nhỏ hơn 5 do
đó -5<a<5. 

24 tháng 1 2016

 /a/ là một số tự nhiên với mọi a ∈ Z nên từ /a/ < 5 ta có:
=> /a/ = {0,1,2,3,4}.
Nghĩa là a ={0,1,-1,2,-2,3,-3,4,-4}. Biểu diễn trên trục số cácc số này đều lớn hơn -5 và nhỏ hơn 5 do
đó -5<a<5. 

 

 

*/a/ là giá trị tuyệt đối nha>>>

22 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)

 \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)

\(A< 1\)(2)

Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)

Chúc bạn học tốt!hihi

 

28 tháng 4 2016

Chào bạn, bạn hãy theo dõi bài giải của mình nhé!

Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(=>2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(=>2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(=>A=1-\frac{1}{2^{100}}\)

Ta có : \(1>\frac{1}{2^{100}}=>A>1-1=0\)

\(\frac{1}{2^{100}}>0=>1-\frac{1}{2^{100}}< 1-0=1\)

\(=>0< A< 1\)

Chúc bạn học tốt!

28 tháng 4 2016

Dễ thấy A>0(vì 1/2>0;1/2^2>0;...;1/2^100>0 =>1/2+1/2^2+1/2^3+...+1/2^100>0)

2A=1+2/2^2+2/2^3+...+2/2^100(rút gọn 1 bước)

2A=1+1/2+1/2^2+...+1/2^99

2A-A=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)

A=1-1/2^100<1

Vậy A<1

Cậu tự KL nhé

8 tháng 3 2016

Vì 0<a<b<c<d<e<f nên :

(a-b) < 0 ; (c-d) < 0 ; (e-f) < 0

và (b-a) > 0 ; (d-c) > 0 ; (f-e) > 0

Do đó (a-b)(c-d)(e-f) < 0 ; (b-a)(d-c)(f-e) > 0

Mà (a-b)(c-d)(e-f).x=(b-a)(d-c)(f-e) <=> x = -1

15 tháng 2 2017

Từ giả thiết \(a+b+c=6\) ta có:

\(\left(a+b+c\right)^2=36=a^2+b^2+c^2+2\left(ab+ac+bc\right)=P+ab+ac+bc\)

Hay \(P=36-ab-bc-ca\).

Vậy GTLN của P tương đương với GTNN của \(ab+bc+ca\)

Không mất tính tổng quát giả sử \(a\) là số lớn nhất trong \(a,b,c\)

Thì \(a+b+c=6\le3a\), do đó \(4\ge a\ge2\)

Lại có: \(ab+bc+ca\ge ab+ca=a\left(b+c\right)=6\left(6-a\right)\ge8\) với \(4 \ge a \ge 2\)

Do đó GTNN của \(ab+bc+ca=8\), khi \(\left\{\begin{matrix}a=4\\b=2\\c=0\end{matrix}\right.\)

Vậy GTLN của P là \(36-8=28\) khi \(\left\{\begin{matrix}a=4\\b=2\\c=0\end{matrix}\right.\)

16 tháng 2 2017

\(\left\{\begin{matrix}a+b+c=6\left(1\right)\\0\le a,b,c\le4\left(2\right)\end{matrix}\right.\)

Từ(1)=> \(\left\{\begin{matrix}b+c=\left(6-a\right)\\b^2+c^2+bc=\left(6-a\right)^2-bc\end{matrix}\right.\)

\(P=a^2+\left(b^2+c^2+bc\right)+a\left(b+c\right)=a^2+\left[\left(6-a\right)^2-bc\right]+a\left(6-a\right)\)

\(P=\left(a^2-12a+36\right)-bc=\left(a-6\right)^2-bc\)

Từ (2)=> \(bc\ge0\) \(\Rightarrow P\le\left(a-6\right)^2\)

đạt được khi: \(b.c=0\Rightarrow\left[\begin{matrix}b=0\\c=0\end{matrix}\right.\) (3)

từ (1)&(3) \(\Rightarrow2\le a\le4\) (4)

P lớn nhất => !a-6! lớn nhất thủa mãn (4) => a=2 Từ (1)&(3)=>\(\left[\begin{matrix}b=4\\c=4\end{matrix}\right.\)

Kết luận:

Để P(a,b,c) đạt Max trong 3 số phải có 1 số =0 (cận bé của (2) ; Một số =4 (cận lớn của (2); một số thỏa mãn điều kiện (1)

Vậy: \(P_{max}\left(a,b,c\right)=P\left(4,2,0\right)=4^2+2^2+0^2+2.4+0+0=28\)