Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 15 + 23 = 1 + 8 = 9 = 32 ( là số chính phương )
b) 52 + 122 = 25 + 144 = 169 = 132 ( là số chính phương )
c) 26 + 62 = 64 + 36 = 100 = 1002 ( là số chính phương )
d) 13 + 23 + 33 + 43 + 53 + 63
= 1 + 8 + 27 + 64 + 125 + 216
= 441 = 212 ( là số chính phương )
a) 15 + 23=1 + 8 = 9 (là số chính phương)
b) 52 + 122= 25 + 144= 169 (là số chính phương)
c) 26 + 62= 64 + 36=100 (là số chính phương)
d) 142 – 122= 196 - 144=52 (không là số chính phương)
e) 13 + 23 + 33 + 43 + 53 + 63= 1 + 8 + 27 + 64 + 125 + 216 = 411 (là số chính phương)
a,S=\(\left(2+2^2+2^3+2^4+2^5+2^6\right)+.....+\left(2^{85}+2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)
\(=126+2^6.\left(2+2^2+2^3+2^4+2^5+2^6\right)+...+2^{84}.\left(2+2^2+2^3+2^4+2^5+2^6\right)\)
\(=126+2^6.126+...+2^{84}.126\)
\(=126.\left(2^0+2^6+2^{12}+....+2^{84}\right)=21.6.\left(2^0+2^6+....+2^{84}\right)\) chia hết cho 21
b,Xét x=0 thì \(5^y=1+124=125\Rightarrow y=3\)(thỏa mãn)
Xét x\(>0\) thì \(5^y>1+124=125>0\) nên \(5^y\) là số lẻ mà \(2^x\) là số chẵn \(\Rightarrow2^x+124\) là số chẵn(vô lí)
Vậy x=0,y=3 thỏa mãn
Bài 1 :
a, \(\left(x^2-29\right)^3=343\)
=> \(\left(x^2-29\right)^3=7^3\)
=> \(x^2-29=7\)
=> \(x^2=7+29=36\)
=> \(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Do x là số tự nhiên => x = 6
b, \(2^{x+2}+2^{x-1}+2^{x-2}=152\)
=> \(2^x.2^2+2^x:2^1+2^x:2^2=152\)
=> \(2^x.2^2+2^x.\frac{1}{2}+2^x.\frac{1}{4}=152\)
=> \(2^x.\left(2^2+\frac{1}{2}+\frac{1}{4}\right)=152\)
=> \(2^x.\frac{19}{4}=152\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> x = 5
Bài 2 :
a, \(\left(2^9.76+2^{10}.35\right).3=2^{10}.38+2^{10}.35=2^{10}\left(38+35\right).3=2^{10}.73.3=1024.3.73=224256\)
b, \(\frac{\left(2^9.76+2^{10}.35\right).3}{2^8.438}=\frac{2^{10}.73.3}{2^9.219}=\frac{2^{10}.219}{2^9.219}=2\)
Bài 1 : Theo đề ta có :
5x . 5x+1 . 5x+2 \(\le\)100....000 ( 18 chữ số 0 ) : 218 ( x \(\in\)N )
=> 5x+x+1+x+2 \(\le\)1018 : 218
=> 53x+3 \(\le\)518
=> 3x + 3 \(\le\)18
=> 3x \(\le\)15
=> x \(\le\)5
Mà x \(\in\)N nên x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Bài 2 : Ta có :
S = 1 + 2 + 22 + 23 + ... + 22005
2S = 2 + 22 + 23 + 24 + ... + 22006 ( Nhân 2 các số hạng trong tổng )
S = 2S - S = ( 2 + 22 + 23 + 24 + ... + 22006 ) - ( 1 + 2 + 22 + 23 + .. + 22005 )
= 22006 - 1 ( Triệt tiệu các số hạng giống nhau )
=> S < 22006
Mặt khác 5 . 22004 > 4 . 22004 = 22 . 22004 = 22006
=> 5 . 22004 > 22006
Do đó S < 5. 22004
Vậy S < 5 . 22004
\(a,\) Trường hợp 1: \(\left\{{}\begin{matrix}a>0\Rightarrow\\a^2=a.a=\left(-a\right).\left(-a\right)\end{matrix}\right.\Rightarrow a^2>0\left(1\right)\)
Tường hợp 2: \(a\ge0\Rightarrow a.a>0\Rightarrow a^2\ge0\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow a^2\ge0\forall a\in Z\)
\(b,\left(x-11\right)^2+2020\)
Ta có: \(\left(x-11\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-11\right)^2+2020\ge2020\forall x\)
\(\Rightarrow Min=2020\Leftrightarrow x=11\)
\(c,-\left(x+64\right)^2+6789\)
Ta có: \(-\left(x+64\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+64\right)^2+64789\le6789\forall x\)
\(\Rightarrow Max=6789\Leftrightarrow x=-64\)
Vậy ..........
A=2/0 + 2/1 + 2/2 + 2/3 + 2/4 + ...+2/2020
A.2=2.(2/0+2/1+2/2+2/3+2/4+...+2/2020
A.2=2/1+2/2+2/3+2/4+2/5+...+2/2020+2/2021 lưu ý / = số mũ VD : 2/3 = 2 mũ 3
A.2-A=2/1+2/2+2/3+2/4+...+2/2021-2/0+2/0+2/1+2/2+2/3+...+2/2020
A=2/2021-2/0
vậy 2/x=2/2021-2/0+1
còn lại tự tính nhé