Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) XÉT \(\Delta AEN\)VÀ\(\Delta AFN\)CÓ
\(\widehat{BAM}=\widehat{CAM}\)HAY\(\widehat{EAN}=\widehat{FAN}\)
AN LÀ CẠNH CHUNG
\(\widehat{ANE}=\widehat{ANF}=90^o\)
=>\(\Delta AEN\)=\(\Delta AFN\)(g-c-g)
=> AE = AF ( HAI CẠNH TƯƠNG ỨNG )
B)
Xét 2 \(\Delta\) BME và CMF
BM=CM
^ BME=^ CMF(ĐĐ)
^EBM= ^ ACB( Góc ngoài tam giác tại B)
=> \(\Delta\) BME= \(\Delta\)CMF(G.C.G)
=> BE=CF( 2 cạnh tương ứng)
C)\(AE=AF\)
\(\Rightarrow2AE=AE+AF\)
\(=AE+AC+CF\)
\(=AE+AC+BE\)
\(=AB+AC\Rightarrow AE=\frac{AB+AC}{2}\left(ĐPCM\right)\)
Bài 4:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Ta có: ΔBAE cân tại B
mà BI là đường phân giác
nên I là trung điểm của AE
hay IA=IE
Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
=>BD vuông góc với AE
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé
a. Xét tg ABH vag tg CAI
Ta có: góc BAH = góc ACI=90 độ - góc IAC
AB=AC
góc AHB= góc CIA=90 độ
Nên tg ABH = tg CAI (cạnh huyền-cạnh góc vuông)
=> BH=AI
b. Ta có:BH=AI (chứng minh câu a)
AD+BH=IC+AI=AB=AC
=>\(BH^2+CI^2\) có giá trị không đổi
c. Ta có: CI vuông góc với AD =>CI là đường cao của tg ACD
AM vuông góc với DC =>AM là đường cao của tg ACD
Mà 2 đường cao CI và AM cắt nhau tại N
=>DN là đường cao thứ 3 của tg ACD
Vậy DN vuông góc với AC
d. AM vuông góc với BM
AI vuông góc với BH
=>góc MBH=góc MAI
Xét tg BHM và tg AIM
Ta có: BH=AI (chứng minh câu a)
Góc MBH=góc MAI(cmt)
BM=AM
Nên tg BHM=tg AIM(g.c.g)
=>HM=IM(1)
Góc BMH=góc AMI(2)
Từ (1) và (2) ta có:
Tg IMH vuông cân tại M
Vậy IM là tia phân giác của góc HIC