Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2
Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)
\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)
Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)
Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)
\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)
Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)
Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có
\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)
Lập bảng biến thiên ta có min[2;\(+\infty\)) \(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)
Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2
Đặt a=xc; b=cy (x;y >=1)
- Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
- Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
- Xét x,y>1 thay vào giả thiết ta có
\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)
\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)
Biểu thức P được viết lại như sau
\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)
\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)
Đặt t=xy với t>=4
Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)
Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)
Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)
Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.
Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)
Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)
"=" Xảy ra khi và chỉ khi:
\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)
\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)
\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)
\(a+b+c=1\)
Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)
Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)
Áp dụng BĐT tương tự ta được đẳng thức
\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)
Áp dụng BĐT Cauchy ta lại có
\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)
Cộng theo vế ta được
\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)
Vậy MinP=\(\frac{3}{2}\)
Ta có : \(\sqrt{2a^2+ab+b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\)
Vì \(\frac{3}{4}\left(a-b\right)^2\ge0\forall a;b\Rightarrow\sqrt{2a^2+ab+b^2}\ge\sqrt{\frac{5}{4}}\left(a+b\right)\)( 1 )
Tương tự , ta có : \(\sqrt{2b^2+bc+c^2}\ge\sqrt{\frac{5}{4}}\left(b+c\right);\sqrt{2c^2+ac+a^2}\ge\sqrt{\frac{5}{4}}\left(a+c\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow P\ge\sqrt{\frac{5}{4}}.2\left(a+b+c\right)=\sqrt{5}\left(a+b+c\right)\)
Áp dụng BĐT phụ \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) , ta có :
\(P\ge\sqrt{5}.\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}=\frac{\sqrt{5}}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{9}\)
Ta có : \(a^2+ab+b^2=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}\left(a+b\right)}{2}\)
Tương tự : \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}\left(b+c\right)}{2}\) ; \(\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}\left(c+a\right)}{2}\)
Suy ra : \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}}{2}.2.\left(a+b+c\right)=\sqrt{3}\)
Vậy MIN B = \(\sqrt{3}\) \(\Leftrightarrow\begin{cases}a+b+c=1\\a=b=c\end{cases}\)
\(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
Tương tự, ta có:
\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)