Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu
a, a2+b2+c2 >= ab+bc+ca
<=>a2+b2+c2-ab-bc-ca >= 0
<=>2(a2+b2+c2-ab-bc-ca) >= 0
<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0
<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
b, a2+b2+1 >= ab+a+b
<=>a2+b2+1-ab-a-b >= 0
<=>2(a2+b2+1-ab-a-b) >= 0
<=>2a2+2b2+2-2ab-2a-2b >= 0
<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0
<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)
Vậy...
c, a2+b2+c2+3 >= 2(a+b+c)
<=>a2+b2+c2+3-2a-2b-2c >= 0
<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0
<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)
Vậy...
d, a2+b2+c2 >= 2(ab+bc-ca)
<=>a2+b2+c2-2ab-2bc+2ca >= 0
<=>(a-b-c)2 >= 0 (luôn đúng)
Dấu "=" xảy ra khi a=b=c
Vậy...
e,ta có: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)
Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)
Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)
Dấu "=" xảy ra khi a = b
2a^2 +2b^2 -5ab = 0
2a^2 -4ab -ab +2b^2 = 0
2a(a-2b) -b(a-2b) = 0
(2a-b)(a-2b) = 0
Suy ra: 2a=b hoặc a=2b
Mà a>b>0 nên a=2b
Ta có: P = a+b/a-b = 2b+b/ 2b-b = 3b/b=3
Vậy P = 3
Chúc bạn học tốt.
Ta có: \(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-2b=0\\2a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}}\)
Mà a > b > 0 nên a = 2b
Thế vào, ta được: \(P=\frac{a+b}{a-b}=\frac{2b+b}{2b-b}=\frac{3b}{b}=3\)
Vậy P = 3
a)
\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^3+2b^3\ge a^3+ab^2+a^2b+b^3\)
\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-ab^2-a^3-b^3\ge0\)
\(\Leftrightarrow a^3+b^3-ab^2-a^2b\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
Vì a , b > 0 nên BĐT trên đúng, mà các phép biến đổi là tương đương
=> ĐPCM
b) Ta có
\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
\(\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3ab^2+3a^2b\)
\(\Leftrightarrow3a^3+3b^3-3a^2b-3ab^2\ge0\)
\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)
Theo câu a , có phần trong ngoặc luôn lớn hơn hoặc bằng 0
\(\Leftrightarrow3\left(a^3+b^3-a^2b-ab^2\right)\ge0\)
Các phép biến đổi là tương đương => ĐPCm
\(\left(a+b\right)^4=a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)
\(8\left(a^4+b^4\right)\ge\left(a+b\right)^4\)
\(\Leftrightarrow8\left(a^4+b^4\right)\ge a^4+4a^3b+6a^{^2}b^2+4ab^3+b^4\)
\(\Leftrightarrow7\left(a^4+b^4\right)\ge4a^3b+6a^{^2}b^2+4ab^3\)
\(\Leftrightarrow7a^4+7b^4-4a^3b-6a^2b^2-4ab^3\ge0\)
\(\Leftrightarrow4a^3\left(a-b\right)-4b^3\left(a-b\right)+3\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow4\left(a-b\right)^2\left(a^2+ab+b^2\right)+3\left(a^2-b^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra
<=> a=b
\(\left(a^2+b^2\right)^2\ge ab\left(a+b\right)^2\)
\(\Leftrightarrow a^4+2a^2b^2+b^4-a^3b-2a^2b^2-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> a=b
a.
Xét hiệu:
\(a^3+b^3-ab\left(a+b\right)=\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)
\(=a^2-ab+b^2-ab=a^2-2ab+b^2\)
\(=\left(a-b\right)^2\ge0\)
=> BĐT luôn đúng
b.
Xét hiệu:
\(a^4+b^4-a^3b-ab^3=\left(a^4-a^3b\right)-\left(b^4-ab^3\right)\)
\(=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a^3-b^3\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a-b\right)\)
\(=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
=> BĐT luôn đúng
a)
\(a^3+b^3\ge ab\left(a+b\right)\forall a,b>0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Rightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
\(\Rightarrowđpcm\)
b)
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4-ab^3+b^4-a^3b\ge0\)
\(\Leftrightarrow a\left(a^3-b^3\right)-b\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrowđpcm\)
c)
\(\left(a+1\right)\left(b+1\right)\ge\left(\sqrt{ab}+1\right)^2\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)-\left(\sqrt{ab}+1\right)^2\ge0\)
\(\Leftrightarrow1+b+a+ab-ab-2\sqrt{ab}-1\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Dấu bằng xảy ra khi \(a=b\)
d)
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\)
Áp dụng bất đẳng thức AM-GM ta được
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}\)
\(\Leftrightarrow\dfrac{a^3}{b}+ab\ge2a^2\)
Tương tự ta được
\(\dfrac{b^3}{c}+bc\ge2b^2,\dfrac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)
Mặt khác ta có:\(a^2+b^2+c^2\ge ab+bc+ac\) (hệ quả bất đẳng thức AM-GM)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\left(đpcm\right)\)
Dấu bằng xảy ra khi \(x=y=z;x,y,z>0\)
A) Với \(x>y>0\),ta có: \(x^2+y^2< x^2+y^2+2xy=\left(x+y\right)^2\Rightarrow\frac{1}{x^2+y^2}>\frac{1}{\left(x+y\right)^2}\)
Xét: \(\frac{x^2-y^2}{x^2+y^2}>\frac{x^2-y^2}{\left(x+y\right)^2}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x-y}{x+y}\)--->ĐPCM
B) \(3^{16}+1=\left(3^{16}-1\right)+2=\left(3^8+1\right)\left(3^8-1\right)+2\)
\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^4-1\right)+2\)
\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3^2-1\right)+2\)
\(=\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\left(3-1\right)+2\)
\(>\left(3^8+1\right)\left(3^4+1\right)\left(3^2+1\right)\left(3+1\right)\)--->ĐPCM
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
Bài 1:
a) \(\frac{4}{9}x^2-y^2=\left(\frac{2}{3}x-y\right)\left(\frac{2}{3}x+y\right)\)
b) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
c) \(4x^2+6x+9=\left(2x+2\right)^2+5\)ko hiểu ???
d) \(\frac{1}{9}x^2-\frac{4}{3}xy+4=\left(\frac{1}{3}x\right)^2-2.\frac{1}{3}x.2+2^2=\left(\frac{1}{3}x-2\right)^2\)
Bài 2:
a) \(\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right)=\frac{1}{4}x^2-\frac{1}{9}y^2\)
b) \(\left(2x-\frac{1}{3}y\right)\left(4x^2+\frac{2}{3}xy+\frac{1}{9}x^2\right)=8x^3-\frac{1}{27}y^3\)
c) \(\left(3x-5y\right)\left(9x^2+15xy+\frac{1}{9}x^2\right)=27x^3-125y^3\)
1) 2( a2 + b2 ) ≥ ( a + b)2
<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( luôn đúng )
=> đpcm
2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :
a + b ≥ \(2\sqrt{ab}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ \(\dfrac{4}{x+y}\)
* Với a > b > 0 ta có:
+) a. a > a. b Û a2 > ab
+) Ta có: a2 > ab => a2.a > a. ab Û a3 > a2b
Mà
a > b > 0 => ab > b.b Û ab > b2 => ab. a > b2. b => a2.b > b3.
=> a2b > b3 => a3 > a2b > b3
=> a3 > b3
Vậy a2 > ab và a3 > b3.
Đáp án cần chọn là: B