K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

1/30 + 1/31 + 1/32 + ... + 1/40 > 1/40 + 1/40 + 1/40 + ... + 1/40 (10 số hạng) = 10/40 = 1/4

1/41 + 1/42 + ... + 1/60 > 1/60 + 1/60 + ... + 1/60 (20 số hạng) = 20/60 = 1/3

=> A > 1/3 + 1/4 = 7/12 

=> đpcm

9 tháng 3 2019

sorry

9 tháng 3 2017

A:  có 30 số hạng không đủ 

phải chia nhỏ ra

\(A=\left(\frac{1}{31}+...+\frac{1}{36}\right)+\left(\frac{1}{37}+..+\frac{1}{48}\right)+\left(\frac{1}{49}+..+\frac{1}{60}\right)\)

\(A>\left(\frac{6}{36}\right)+\left(\frac{12}{48}\right)+\left(\frac{12}{60}\right)=\frac{3}{12}+\frac{3}{12}+\frac{1}{12}=\frac{7}{12}\)

28 tháng 7 2018

giup minh nhanh nhe

tích mình đi

ai tích mình 

mình tích lại 

thanks

17 tháng 6 2018

A = 1/31 + 1/32 + 1/33 + ... + 1/60

=> A = (1/31 + 1/32 + ... + 1/45) + (1/46 + 1/47 + ... 1/60) > (1/45) x 15 + (1/60) x 15

=> A > 1/3 + 1/4 = 7/12

Vậy A > 7/12 (đpcm)

14 tháng 7 2016

A = 1/31 + 1/32 + ... + 1/60

A = (1/31 + 1/32 + ... + 1/40) + (1/41 + 1/42 + ... + 50) + (1/51 + 1/52 + ... + 1/60)

A > 1/40 × 10 + 1/50 × 10 + 1/60 × 10

A > 1/4 + 1/5 + 1/6

A > 1/4 + 1/6 + 1/6

A > 1/4 + 1/3

A > 7/12

29 tháng 7 2015

A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50)  < 1/4 ;   (1/51 + 1/52+...+1/59+1/60) < 1/5

Mà A = (1/3 + 1/4 + 1/5) = 47/60 > 7/12 

Vậy A >7/12

\(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+...+\frac{1}{60}\right)>\frac{1}{45}.15+\frac{1}{60}.15=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

=>đpcm

l-i-k-e cho mình nha

9 tháng 3 2017

vì sao lại thế

15 tháng 3 2019

Làm đc bài 1, 3, 4 th

15 tháng 3 2019

vậy giúp mình. dòng 3 và 4 là 1 bài