Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2a^{n+2}b^n-18a^nb^{n+2}\)
\(=2a^nb^n\left(a^2-9b^2\right)\)
\(=2a^nb^n\left(a-3b\right)\left(a+3b\right)\)
a) \(2x^2-5x-12\)
\(=2x^2-8x+3x-12\)
\(=2x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(2x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+3x^2+2x\right)+\left(2x^2+6x+4\right)\)
\(=x\left(x^2+3x+2\right)+2\left(x^2+3x+2\right)\)
\(=\left(x^2+3x+2\right)\left(x+2\right)\)
\(=\left(x^2+x+2x+2\right)\left(x+2\right)\)
\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left(x+2\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+2\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
c) \(x^4+x^2+1\)
\(=\left(x^4-x^3+x^2\right)+\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\)
\(=x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
Bài 2:
a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)
\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)
c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)
\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)
Câu 1:
a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)
\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)
b) \(x^4+2009x^2+2008x+2009\)
\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)
Câu 1.
a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )
b) x4 + 2009x2 + 2008x + 2009
= x4 + 2009x2 + 2009x - x + 2009
= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )
= x( x3 - 1 ) + 2009( x2 + x + 1 )
= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )
= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]
= ( x2 + x + 1 )( x2 - x + 2009 )
c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )
Câu 2.
3x2 + x - 6 - √2 = 0
<=> ( 3x2 - 6 ) + ( x - √2 ) = 0
<=> 3( x2 - 2 ) + ( x - √2 ) = 0
<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0
<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0
<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)
+) x - √2 = 0 => x = √2
+) 3( x + √2 ) + 1 = 0
<=> 3( x + √2 ) = -1
<=> x + √2 = -1/3
<=> x = -1/3 - √2
Vậy S = { √2 ; -1/3 - √2 }
Câu 3.
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t
Dấu "=" xảy ra khi t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
=> MinA = -4 <=> x = 1 hoặc x = -2
- Toán lớp 8
- Khóa học Toán lớp 8
Gửi câu trả lời của bạn
Bài 1
\(a,5x^2-10xy+5y^2\)
\(=5\cdot\left(x^2-2xy+y^2\right)\)
\(=5\cdot\left(x-y\right)^2\)
\(b,x^2-y^2+6y-9\)
\(=x^2-\left(y^2-6y+9\right)\)
\(=x^2-\left(y-3\right)^2\)
\(=\left(x-y+3\right)\cdot\left(x+y-3\right)\)
\(c,3x^4-75x^2y^2\)
\(=3x^2\cdot\left(x^2-25y^2\right)\)
\(=3x^2\cdot\left(x-5y\right)\cdot\left(x+5y\right)\)
\(d,x^4y+xy^4\)
\(=xy\left(x^3+y^3\right)\)
\(=xy\cdot\left(x+y\right)\cdot\left(x^2-xy+y^2\right)\)
a) ( 3 - x )( x2 + 2x - 7 ) + ( x - 3 )( x2 + x - 5 )
= ( 3 - x )( x2 + 2x - 7 ) - ( 3 - x )( x2 + x - 5 )
= ( 3 - x )( x2 + 2x - 7 - x2 - x + 5 )
= ( 3 - x )( x - 2 )
b) ( x - 5 )2 + 3( 5 - x )
= ( x - 5 )2 - 3( x - 5 )
= ( x - 5 )( x - 5 - 3 ) = ( x - 5 )( x - 8 )
c) 2x( x - 1 )2 - ( 1 - x )3
= 2x( 1 - x )2 - ( 1 - x )3
= ( 1 - x )2( 2x - 1 + x ) = ( 1 - x )2( 3x - 1 )
d) x2 + 8x + 16 = ( x + 4 )2
e) x2 - 4xy + 4y2 = ( x - 2y )2
g) 4x2 - 25y2 = ( 2x )2 - ( 5y )2 = ( 2x - 5y )( 2x + 5y )
h) 25( x + 1 )2 - 4( x - 3 )2
= 52( x + 1 )2 - 22( x - 3 )2
= ( 5x + 5 )2 - ( 2x - 6 )2
= ( 5x + 5 - 2x + 6 )( 5x + 5 + 2x - 6 )
= ( 3x + 11 )( 7x - 1 )
i) x3 + 27 = ( x + 3 )( x2 - 3x + 9 )
k) 8x3 - 125 = ( 2x )3 - 53 = ( 2x - 5 )( 4x2 + 10x + 25 )
l) x3 + 6x2 + 12x + 8 = ( x + 2 )3
m) -x3 + 9x2 - 27x + 27 = -( x3 - 9x2 + 27x - 27 ) = -( x - 3 )3
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
Ta có 4 x n + 2 – 8 x n = 4 x n . x 2 – 8 x n = x n ( 4 x 2 – 8 )
Vậy khi đặt nhân tử chung x n ra ngoài ta được biểu thức còn lại là 4 x 2 – 8
Đáp án cần chọn là: B