Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạt X còn lại là: \(N=\dfrac{N_0}{2^{\dfrac{t}{T}}}=\dfrac{N_0}{8}\)
Số hạt X bị phân rã: \(\Delta N=N_0-N=\dfrac{7}{8}N_0\)
Số hạt nhân chưa bị phân rã (số hạt nhân còn lại)
\(N= N_0 2^{-\frac{t}{T}} = N_02^{-\frac{0,5T}{T}}= N_02^{-0,5}= \frac{N_0}{\sqrt{2}}.\)
Số hạt nhân chưa phóng xạ chính là số hạt nhân còn lại
\(N= N_0 2^{-\frac{t}{T}}= N_0 .2^{-4}= \frac{1}{16}N_0.\)
Công thức tính số hạt nhân còn lại tại thời điểm t:
Đáp án C
Đáp án: A.
Tại thời điểm t1: số hạt nhân còn lại N = N0/5 ⇒ 2t1/T = 5
Tại thời điểm t2: số hạt nhân còn lại N = N0/20 ⇒ 2(t1+ 100)/T = 20 ⇒ 5.2100/T = 20
⇒ T = 100/2 = 50s.
Sau thời gian t1 số hạt nhân còn lại là
\(N = N_0 2^{-\frac{t}{T}}\)=> \(\frac{N}{N_0}= 0,2= 2^{-\frac{t_1}{T}}=> t_1 = -T.\ln_20,2.\)
Sau thời điểm t2 thì số hạt nhân còn lại là
\(N_1 = N_0 2^{-\frac{t_2}{T}}=> \frac{N}{N_0} = 0,05 = 2^{-\frac{t_2}{T}}\)=> \(t_2 = -T\ln_20,05.\)
Mà \(t_2 = t_1 +100\)
=> \(-T \ln_2 0,05 = -T\ln_2 0,2 + 100\)
=> \(T = \frac{100}{\ln_2{(0,2/0,05)}}=50 s. \)
Chọn C