Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)
Tương tự cho các số còn lại rồi cộng vào sẽ được
\(S\le\dfrac{3}{2}\)
Dấu "=" khi a=b=c=1
Vậy
\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)
\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)
Cmtt rồi cộng vào ta đc đpcm
Dấu "=" khi x = y = z = 1/3
Đặt \(x+y=t,t\in\left[-2;2\right]\)
Biến đổi được \(P=-2t^3+6t\)
Xét \(f\left(t\right)=-2t^3+6t\) trên \(\left[-2;2\right]\)
Lập bảng biến thiên
Ta có \(P_{Max}=4\) khi t=1
\(P_{Min}=-4\) khi t= -1
1) TXĐ: \(D=R\)
2) Sự biến thiên
Giới hạn hàm số tại vô cực
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^2-4x+3\right)=+\infty\)
\(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2-4x+3\right)=+\infty\)
Chiều biến thiên
\(y'\left(x\right)=2x-4\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=2\)
Bảng biến thiên:
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
Nhận xét: hàm số nghịch biên trên khoảng \(\left(-\infty;2\right)\) và đồng biến trên khoảng \(\left(2;+\infty\right)\).
Hàm số đạt cực tiểu tại \(x=2\) với \(y_{CT}=-1\).
- Đồ thị hàm số
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
x y O
b)
1) Tập xác định: \(D=R\)
2) Sự biến thiên
\(y'\left(x\right)=-3-2x\);\(y'\left(x\right)=0\Leftrightarrow x=\dfrac{-3}{2}\).
Bảng biến thiên:
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
Nhận xét:
Hàm số đồng biến trên \(\left(-\infty;\dfrac{-3}{2}\right)\) và nghịch biến trên \(\left(-\dfrac{3}{2};+\infty\right)\).
Hàm số đạt cực đại tại \(x=-\dfrac{3}{2}\) với \(y_{CĐ}=\dfrac{13}{4}\).
3) Đồ thi hàm số
Giao Ox: \(y=0\Rightarrow2-3x-x^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
\(A\left(\dfrac{-3-\sqrt{17}}{2};0\right);B\left(\dfrac{-3+\sqrt{17}}{2};0\right)\).
Giao Oy: \(x=0\Rightarrow y=2\)
\(C\left(0;2\right)\).
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
J = (-4.34, -5.84)
J = (-4.34, -5.84)
J = (-4.34, -5.84)
K = (11.02, -5.84)
K = (11.02, -5.84)
K = (11.02, -5.84)
x y A B O
Ta thấy nếu một trong 3 số x, y, z bằng 0 thì 2 số còn lại cũng bằng 0 và M = 0
Xét trường hợp \(xyz\ne0\) :
Đặt \(2^x=3^y=6^{-z}=k>0\). Khi đó \(2=k^{\frac{1}{x}};3=k^{\frac{1}{y}};6=k^{-\frac{1}{z}}\)
mà \(2.3=6\) nên \(k^{\frac{1}{x}}.k^{\frac{1}{y}}=k^{-\frac{1}{z}}\)
\(\Leftrightarrow k^{\frac{1}{x}+\frac{1}{y}}=k^{-\frac{1}{z}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
\(\Leftrightarrow xy+yz+zx=0\)
Vậy trong mọi trường hợp, ta đều có : \(M=0\)
Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:
\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)
(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:
\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)
\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:
\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)
\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)
Vậy...
P/s: check xem em có tính sai chỗ nào không:v
Đk: \(x\ge2;y\ge-1;0< x+y\le9\)
Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)
Từ giả thiết suy ra
\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)
Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:
\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)
\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)
Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)
Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)
\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Chọn B.