K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

Chọn A

Giả sử bốn số hạng đó là a − 3 x ; a − x ; a + x ; a + 3 x  với công sai là d =2x. Khi đó, ta có:

a − 3 x + a − x + a + x + a + 3 x = 20 a − 3 x 2 + a − x 2 + a + x 2 + a + 3 x 2 = 120

⇔ 4 a = 20 4 a 2 + 20 x 2 = 120 ⇔ a = 5 x = ± 1

Vậy bốn số cần tìm là 2; 4; 6; 8.

Tổng của 2 số hạng đầu tiên là:  2+ 4= 6.

8 tháng 11 2017

Đáp án B

29 tháng 4 2017

Chọn đáp án B

23 tháng 12 2018

Đáp án C

Gọi d = 2 x  là công sai

ta có bốn số là  a - 3 x , a - x , a + x , a + 3 x

Khi đó, từ giả thiết ta có:

⇔ 1 , 3 , 5 , 7 7 , 5 , 3 , 1

Tổng bình phương của số hạng đầu và cuối là  1 2 + 7 2 = 50

23 tháng 12 2016

ta có : U1

U2=U1.q

...

=> S3=U1(1+q+q2)=...........

20 tháng 1 2018

Chọn B

Gọi ba số hạng liên tiếp của cấp số cộng là a - 2x; a ; a+2x với công sai d=2x.

Theo giả thiết ta có:

a − 2 x + a + a + 2 x = − 9 ( a - 2 x ) 2 + a 2 + a + 2 x 2 = 29 ⇔ 3 a = − 9 3 a 2 + ​ 8 x 2 = 29 ⇔ a = − 3 8 x 2 = 2 ⇔ a = − 3 x = ± 1 2

với 

x =    1 2     ⇒ u 1 =    a − 2 x =    − 3 − 2.    1 2 =   − 4

với 

x =    − 1 2     ⇒ u 1 =    a − 2 x =    − 3 − 2.    − 1 2 =   − 2

 

Vậy số hạng đầu tiên là -4 hoặc -2 

Tham khảo:

undefined

21 tháng 4 2016

Theo giả thiết ta có :

               \(u_1+u_2=u_1+\frac{1}{4}\left(u_1\right)=24\)

             \(\Rightarrow u_1+\frac{1}{4}u_1^2-24=0\)

             \(\Leftrightarrow u_1=-12\) V \(u_1=8\)

Vậy có 2 cấp số nhân tương ứng là : 8,16,32,128 hoặc -12,36,-108,-972

25 tháng 5 2017

a)
Gọi q là công bội của \(\left(u_n\right)\). Ta có:
\(\left\{{}\begin{matrix}u_1+u_1q^4=51\\u_1q+u_1q^5=102\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1+u_1q^4}{u_1q_1+u_1q^5}=\dfrac{51}{102}\)\(\Leftrightarrow\dfrac{1+q^4}{q+q^5}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1+q^4}{q\left(1+q^4\right)}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1}{q}=\dfrac{1}{2}\)\(\Leftrightarrow q=2\).
Suy ra: \(u_1+2^4u_1=51\)\(\Leftrightarrow17u_1=51\)\(\Leftrightarrow u_1=3\).
b) \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\)\(\dfrac{3\left(1-2^n\right)}{1-2}=3\left(2^n-1\right)=3069\)
\(\Leftrightarrow2^n-1=1023\)\(\Leftrightarrow2^n=1024=2^{10}\)\(\Leftrightarrow n=10\).
Vậy tổng của 10 số hạng đầu tiên bằng 10.
c)
\(u_1.q^{n-1}=3.2^{n-1}=12288\)\(\Leftrightarrow2^{n-1}=4096=2^{12}\)\(\Leftrightarrow n-1=12\)\(\Leftrightarrow n=13\).
Vậy số hạng thứ 13 bằng 12 288.