Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là biến cố: "Trong 5 quân bài lấy ra phải có quân 2 rô, quân 3 pích, quân 6 cơ, quân 10 nhép và quân K cơ''.
=> n(A) =1
Vì lấy quân 2 rô có 1 cách.
Lấy quân 3 pích có 1 cách.
Lấy quân 6 cơ có 1 cách.
Lấy quân 10 nhép có 1 cách.
Lấy quân K cơ có 1 cách.
\(\Rightarrow\) P(A) = 1/C5 (52)
Số phần tử của không gian mẫu: \(\left|\Omega\right|=C^4_{52}\)
a) Gọi A là biến cố: "4 quân đều thuộc 1 bộ."
Ta thấy ngay \(\left|A\right|=4.C^4_{13}\)
\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{4.C^4_{13}}{C^4_{52}}=\dfrac{44}{4165}\)
b) Gọi B là biến cố: "4 quân chỉ khác nhau về bộ."
Dễ thấy \(\left|B\right|=13^4\)
Do đó \(P\left(B\right)=\dfrac{\left|B\right|}{\left|\Omega\right|}=\dfrac{13^4}{C^4_{52}}=\dfrac{2197}{20825}\)
Số phần tử của không gian mẫu: ∣Ω∣=�524∣Ω∣=C524
a) Gọi A là biến cố: "4 quân đều thuộc 1 bộ."
Ta thấy ngay ∣�∣=4.�134∣A∣=4.C134
⇒�(�)=∣�∣∣Ω∣=4.�134�524=444165⇒P(A)=∣Ω∣∣A∣=C5244.C134=416544
b) Gọi B là biến cố: "4 quân chỉ khác nhau về bộ."
Dễ thấy ∣�∣=134∣B∣=134
Do đó �(�)=∣�∣∣Ω∣=134�524=219720825P(B)=∣Ω∣∣B∣=C524134=208252197
đây nhaPhép thử T được xét là: "Từ cỗ bài tú lơ khơ 52 con bài, rút ngẫu nhiên 4 con bài".
Mỗi kết quả có thể có là một tổ hợp chập 4 của 52 con bài. Do đó số các kết quả có thể có của phép thử T là n(Ω) = C452 = = 270725.
Vì rút ngẫu nhiên nên các kết quả có thể có là đồng khả năng.
a) Gọi biến cố A: "Rút được bốn con át". Ta có, số kết quả có thể có thuận lợi cho A là n(A) = 1. Suy ra P(A) = ≈ 0,0000037.
b) Gọi biến cố B: "Rút được ít nhất một con át". Ta có
= "Rút được 4 con bài đều không là át". Mỗi kết quả có thể thuận lợi cho là một tổ hợp chập 4 của 48 con bài không phải là át. Suy ra số các kết quả có thể có thuận lợi cho là C448 = = 194580. Suy ra P() = ≈ 0,7187.
Qua trên ta có P(B) = 1 - P() ≈ 0,2813.
c) Gọi C là biến cố: "Rút được hai con át và hai con K".
Mỗi kết quả có thể có thuận lợi cho C là một tổ hợp gồm 2 con át và 2 con K. Vận dụng quy tắc nhân tính được số các kết quả có thể có thuận lợi cho C là
n(C) = C24 C24 = 6 . 6 = 36.
Suy ra P(C) = ≈ 0,000133.
n(Ω) = C552 = 2598960 ( cách )
gọi biến cố đối của biến cố A la ' trong năm quân bài này ko có quân át '
➩ n(A đối) = 1712304 (cách )
➩ P(A đối) = n(A)/n(Ω) = 1712304/2598960 ( cách )
từ đó, suy ra P(A) = 1- P(A đối ) = 1-1712304/2598960 = 0,3412
Ta có số cách chọn ngẫu nhiên 4 quân bài là: C 52 4 = 270725
Suy ra Ω = 270725
Vì bộ bài chỉ có 1 tứ quý K nên ta có Ω A = 1
Vậy P ( A ) = 1 270725
Đáp án A