Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\left|x-\dfrac{2}{7}\right|\ge0\forall x\)
\(\Rightarrow\left|x-\dfrac{2}{7}\right|+0,5\ge0,5\forall x\)
Hay: \(A\ge0,5\forall x\)
=> Min A = 0,5 tại \(\left|x-\dfrac{2}{7}\right|=0\Rightarrow x=\dfrac{2}{7}\)
b, \(B=\left|x-5\right|+\left|x-2\right|=\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|\) =3
=> Min B = 3 tại \(\left(x-5\right)\left(2-x\right)>0\)
=)) Làm nốt
c,Tương tự b
=.= hk tốt!!
a)A=x+3/x-2
A=x-2+5/x-2
A=1+5/x-2
vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2
x-2 thuộc ước của 5
x-2 thuộc -5;-1;1;5
x = -3;1;3 hoặc 7
giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2
b)để B= 1-2x/2+x thuộc Z thì
1-2x phải chia hết cho 2+x
nên 1-2x-4+4 phải chia hết cho x+2
1-(2x+4)+4 phải chia hết cho x+2
1+4-[2(x+2] phải chia hết cho x+2
5 -[2(x+2] phải chia hết cho x+2
vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2
suy ra x+2 thuộc ước của 5
x+2 thuộc -5;-1;1;5
x=-7;-3;-1;3
giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1
a) Ta có:
\(M\left(x\right)=A\left(x\right)-2.B\left(x\right)+C\left(x\right)\)
\(=\left(2x^5-4x^3+x^2-2x+2\right)-2.\left(x^5-2x^4+x^2-5x+3\right)+\left(x^4+3x^3+3x^2-8x+4\frac{3}{16}\right)\)
\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+x^4+4x^3+3x^2-8x+\frac{67}{16}\)
\(=\left(2x^5-2x^5\right)+\left(4x^4+x^4\right)+\left(-4x^3+4x^3\right)+\left(x^2-2x^2+3x^2\right)+\left(-2x+10x-8x\right)+\left(2-6+\frac{67}{16}\right)\)
\(=0+5x^4+0+2x^2+0+\frac{3}{16}\)
\(=5x^4+2x^2+\frac{3}{16}\)
b) Thay \(x=-\sqrt{0,25}=-0,5\); ta có:
\(M\left(-0,5\right)=5.\left(-0,5\right)^4+2.\left(-0,5\right)^2+\frac{3}{16}\)
\(=5.0,0625+2.0,25+\frac{3}{16}\)
\(=\frac{5}{16}+\frac{8}{16}+\frac{3}{16}=\frac{16}{16}=1\)
c) Ta có:
\(x^4\ge0\) với mọi x
\(x^2\ge0\) với mọi x
\(\Rightarrow5x^4+2x^2+\frac{3}{16}>0\) với mọi x
Do đó không có x để M(x)=0
Đặt \(A=\left|x-2\right|+\left|x-3\right|\)
Ta có:
\(\left|x-3\right|=\left|3-x\right|\)
\(\Rightarrow A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)
Do đó 1 chính là giá trị nhỏ nhất của A
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Ta có bảng xét dấu sau:
x x-2 3-x (x-2)(3-x) 2 3 0 0 + + + + + 0 0 _ _ _ _
\(\Rightarrow2\le\)\(x\le\)\(3\)
\(\Rightarrow x\in\left\{2;3\right\}\)
Vậy \(x\in\left\{2;3\right\}\)
Lời giải:
Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:
\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)
Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$
Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$
Do đó ta có đpcm
Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)
\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)
Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)
Ta lại có : \(a+b+c⋮3\)
mà \(b⋮3\) ; \(c⋮3\)
\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)
Vậy a,b,c \(⋮3\)
a, ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{x^2-1}-\dfrac{2x}{x^2-1}=0\)
\(\Rightarrow x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=1\left(KTMĐK\right)\end{matrix}\right.\)
Vậy...........
b, ĐKXĐ: \(x\ne0\) ; \(x\ne2\)
\(\Leftrightarrow\dfrac{x^2-4}{x\left(x-2\right)}-\dfrac{2x+13}{x\left(x-2\right)}=0\)
\(\Rightarrow x^2-4-2x-13=0\)
\(\Leftrightarrow x^2-2x-17=0\)
\(\Leftrightarrow\left(x-1\right)^2-16=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\left(TMĐK\right)}}\)
Vậy.............
mk làm hơi tắt nha bn
a) 2\(\frac{x}{7}\) = \(\frac{75}{35}\)
\(\frac{2.7+x}{7}\) = \(\frac{75:5}{35:5}\) = \(\frac{15}{7}\)
=> 2.7+x = 15
14+x = 15
x = 15-14 = 1
Vậy x=1
b)4\(\frac{3}{x}\) = \(\frac{47}{x}\)
\(\frac{4.x+3}{x}\) = \(\frac{47}{x}\)
=> 4.x + 3 = 47
4x= 47-3=44
vậy x= 44:4=11
c)x\(\frac{x}{15}\) = \(\frac{112}{5}\)
x\(\frac{x}{15}\) =\(\frac{112.3}{5.3}\) = \(\frac{336}{15}\)
\(\frac{x.15+x.1}{15}\) = \(\frac{336}{15}\)
=>(15+1) x =336
16x = 336
x = 336 : 16
vậy x = 21
Thay a,b,c lần lượt vào biểu thức...
Tính được kết quả:
a) A= \(-\frac{7}{10}\)
b) B= \(-\frac{2}{7}\)
c) C= 0
Đáp án đúng : C