K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

Điều kiện: xy > 0

2 x 2 + y 2 + 2 x y = 16 x + y + 2 x y = 16 ⇔ 2 x 2 + y 2 = x + y ⇔ ( x – y ) 2   = 0 ⇔ x = y

Thay x = y vào x + y + x y = 16 ta được

2x + 2|x| = 16 ⇔ x + |x| = 8 ⇒ x = 4 ⇒ y = x = 4

Vậy hệ có một cặp nghiệm duy nhất (x; y) = (4; 4)

Khi đó  x y = 4 4 = 1

Đáp án:D

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0
Bài 4:Cho hệ phương trình :\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\) a)Giải hệ và biện luận hệ theo m b)Với giá trị nguyên nào của m thì hệ phương trình có nghiệm duy nhất.X>0 ;Y<0 c)Xác định m để hệ có nghiệm duy nhất x,y mà P=\(x^2+y^2\) đạt giá trị nhỏ nhất d)Xác định m để hệ có nghiệm duy nhất ,thỏa mãn \(x^2+2y=0\) e)Xác định m để hệ có nghiệm duy nhất...
Đọc tiếp

Bài 4:Cho hệ phương trình :\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

a)Giải hệ và biện luận hệ theo m

b)Với giá trị nguyên nào của m thì hệ phương trình có nghiệm duy nhất.X>0 ;Y<0

c)Xác định m để hệ có nghiệm duy nhất x,y mà P=\(x^2+y^2\) đạt giá trị nhỏ nhất

d)Xác định m để hệ có nghiệm duy nhất ,thỏa mãn \(x^2+2y=0\)
e)Xác định m để hệ có nghiệm duy nhất x,y sao cho m có tọa độ x,y nằm trên parapol \(y=-0,5x^2\)
f)Chứng minh rằng hệ có nghiệm duy nhất x,y thì điểm n có tọa độ x,y luôn nằm treen1 đường thẳng cố định khi m nhận các giá trị khác nhau
Bài 5:Cho hệ phương trình:\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
a)Giải hệ phương trình khi m=2

b)tìm m để hệ có nghiệm duy nhất x,y mà S=x-y đạt giá trị lớn nhất

1
18 tháng 6 2020

\(\left\{{}\begin{matrix}x+2y=2\\2x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x+2y=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

6 tháng 9 2020

Hệ có nghiệm duy nhất khi và chỉ khi \(\frac{m-1}{2}\ne\frac{-m}{-1}\Leftrightarrow m\ne-1\)

Xét m=0 thì x=1, y=-3 --> thỏa mãn 

Xét m khác 0 thì nhân 2 vế của đẳng thức thứ 2 cho m ---> \(\hept{\begin{cases}\left(m-1\right)x-my=3m-1\\2mx-my=m^2+5m\end{cases}}\)

Lấy đẳng thức 2 trừ đẳng thức 1 vế theo vế--> Dễ dàng tính được x=m+1, y=m-3 ---> thế vào điều kiện:

\(x^2-y^2< 4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2< 4\Leftrightarrow8m-8< 4\Leftrightarrow m< \frac{3}{2}\)

Đối chiếu điều kiện có nghiệm duy nhất---> Kết luận \(m< \frac{3}{2},m\ne-1\)

20 tháng 8 2021

b, \(\hept{\begin{cases}x^2+y^2=1\\x-y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=1\\y=x-m\end{cases}}\)

\(\left(1\right)\Rightarrow\left(x+x-m\right)^2-2x\left(x-m\right)=1\)

\(\Leftrightarrow\left(2x-m\right)^2-2x\left(x-m\right)=1\Leftrightarrow4x^2-4xm+m^2-2x^2+2xm=1\)

\(\Leftrightarrow2x^2-2mx+m^2-1=0\)

Để hệ pt có nghiệm khi \(\Delta\ge0\)

\(\Delta=\left(-2m\right)^2-4\left(m^2-1\right).2=4m^2-8m^2+8=-4m^2+8\ge0\)

\(\Leftrightarrow-\sqrt{2}\le m\le\sqrt{2}\)