Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(i_1 = \frac{\lambda_1D_1}{a}\)
\(i_2 = \frac{\lambda_2D_2}{a}\)
=> \(\frac{i_1}{i_2} = \frac{\lambda_1D_1}{\lambda_2D_2} \)
=> \(\frac{\lambda_1}{\lambda_2} = \frac{i_1D_2}{i_2D_1} = \frac{1.2}{3.1}= \frac{2}{3}\) (do \(i_2 = 3i_1; D_2 = 2D_1\))
=> \(\lambda_2 = \frac{3\lambda_1}{2} = \frac{3.0,4}{2} = 0,6 \mu m.\)
Chọn đáp án.A
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
Ta có: \(i_1=3,5/7=0,5mm\)
\(i_2=7,2/8=0,9mm\)
Vân sáng: \(i=\dfrac{\lambda D}{a}\)
Suy ra: \(\dfrac{i_1}{i_2}=\dfrac{\lambda_1}{\lambda_2}\Rightarrow \lambda_2=\lambda_1.\dfrac{i_2}{i_1}=420.\dfrac{0,9}{0,5}=756nm\)
Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)
\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)
\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)
Thay vào (1) \(x_T=5i_1=4i_2\)
Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)
Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ2.
Đáp án A.
Khi electron chuyển từ L (n = 2) sang K (n = 1) phát ra phô tôn có bước sóng λ21 thỏa mãn:
\(\frac{hc}{\lambda_{21}}= E_2-E_1,(1)\)
Tương tự
\(\frac{hc}{\lambda_{32}}= E_3-E_2,(2)\)
\(\frac{hc}{\lambda_{31}}= E_3-E_1,(3)\)
Cộng (2) cho (1), so sánh với (3):
\(\frac{hc}{\lambda_{21}}+\frac{hc}{\lambda_{32}}= \frac{hc}{\lambda_{31}}\)=> \(\frac{1}{\lambda_{31}}=\frac{1}{\lambda_{21}}+\frac{1}{\lambda_{32}} \)
=> \(\lambda_{31}= \frac{\lambda_{32}\lambda_{21}}{\lambda_{32}+\lambda_{21}}.\)
Năng lượng của điện tử ở trạng thái dừng n: \(E_n =-\frac{13,6}{n^2}.(eV)\)
Hai vạch đầu tiên trong dãy Lai-man tương ứng với
vạch 1: Từ L (n = 2) về K (n = 1): \(hf_1 = E_2-E_1.(1)\)
vạch 2: Từ M (n = 3) về K (n = 1): \(hf_2 = E_3-E_1.(2)\)
Vạch đầu tiên trong dãy Ban-me ứng với
Từ M (n = 3) về L (n = 2): \(hf_{\alpha}= E_3-E_2.(3)\)
Lấy (1) trừ đi (2), so sánh với (3) ta có : \(hf_2-hf_1 = hf_{\alpha}\)=> \(f_{\alpha}=f_2-f_1. \)
- Ở một nhiệt độ nhất định, một đám hơi có khả năng phát ra những ánh sảng đơn sác nào thì nó cũng có khả năng hấp thụ ánh sáng đơn sắc đó
Công thức Anh-xtanh: \(hf = A+ eU_h\)
\(\frac{hc}{\lambda_1} = A+ eU_{h1}\) => \(eU_{h1} = \frac{hc}{\lambda_1} - A = hc(\frac{2}{\lambda_0} - \frac{1}{\lambda_0}) = \frac{hc}{\lambda_0}.\)
\(\frac{hc}{\lambda_2} = A+ eU_{h2}\)=> \(eU_{h2} = \frac{hc}{\lambda_2} - A = hc(\frac{3}{\lambda_0} - \frac{1}{\lambda_0}) = 2.\frac{hc}{\lambda_0}.\)
=> \(\frac{U_{h1}}{U_{h2}} = \frac{1}{2}\)
=> Chọn đáp án C.
Ở một nhiệt độ nhất định, một đám hơi có khả năng phát ra những ánh sảng đơn sác nào thì nó cũng có khả năng hấp thụ ánh sáng đơn sắc đó.
Chọn đáp án A