K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 11 2019

Bài 1:

\(\left(x^{-\frac{1}{5}}+x^{\frac{1}{3}}\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^{-\frac{1}{5}}\right)^k\left(x^{\frac{1}{3}}\right)^{10-k}=\sum\limits^{10}_{k=0}C_{10}^kx^{\frac{10}{3}-\frac{8k}{15}}\)

Trong khai triển trên có 11 số hạng nên số hạng đứng giữa có \(k=6\)

\(\Rightarrow\) Số hạng đó là \(C_{10}^6x^{\frac{10}{3}-\frac{48}{15}}=C_{10}^6x^{\frac{2}{15}}\)

Bài 2:

\(\left(1+x^2\right)^n=a_0+a_1x^2+a_2x^4+...+a_nx^{2n}\)

Cho \(x=1\Rightarrow2^n=a_0+a_1+...+a_n=1024=2^{10}\)

\(\Rightarrow n=10\)

\(\left(1+x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^{2k}\)

Số hạng chứa \(x^{12}\Rightarrow2k=12\Rightarrow k=6\) có hệ số là \(C_{10}^6\)

Bài 3:

\(\left(x-\frac{1}{4}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(-\frac{1}{4}\right)^{n-k}\)

Với \(k=n-2\Rightarrow\) hệ số là \(C_n^{n-2}\left(-\frac{1}{4}\right)^2=\frac{1}{16}C_n^2\)

\(\Rightarrow\frac{1}{16}C_n^2=31\Rightarrow C_n^2=496\Rightarrow n=32\)

NV
12 tháng 11 2019

Bài 4:

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)

Cho \(x=2\) ta được:

\(\left(1+2\right)^n=C_n^0+2C_n^1+2^2C_n^2+...+2^nC_n^n\)

\(\Rightarrow S=3^n\)

Bài 5:

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^{2k}C_n^{2k}+x^{2k+1}C_n^{2k+1}+...\)

Cho \(x=-1\) ta được:

\(0=C_n^0-C_n^1+C_n^2-C_n^3+...+C_n^{2k}-C_n^{2k+1}+...\)

\(\Rightarrow C_n^0+C_n^2+...+C_n^{2k}+...=C_n^1+C_n^3+...+C_n^{2k+1}+...\)

Bài 6:

\(\left(1-4x+x^2\right)^5=\sum\limits^5_{k=0}C_5^k\left(-4x+x^2\right)^k=\sum\limits^5_{k=0}\sum\limits^k_{i=0}C_5^kC_k^i\left(-4\right)^ix^{2k-i}\)

Ta có: \(\left\{{}\begin{matrix}2k-i=5\\0\le i\le k\le5\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;3\right);\left(3;4\right);\left(5;5\right)\)

Hệ số: \(\left(-4\right)^1.C_5^3C_3^1+\left(-4\right)^3C_5^4.C_4^3+\left(-4\right)^5C_5^5.C_5^5\)

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là : A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0 Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là : A. 1 B. 0 C. 3 D. \(+\infty\) Câu 3 : Biết rằng lim...
Đọc tiếp

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là :

A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0

Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là :

A. 1 B. 0 C. 3 D. \(+\infty\)

Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2 + b2 + c2

A. S = 26 B. S = 30 C. S = 21 D. S = 31

Câu 4 : Cho un = \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\) thì lim \(\left(u_n-\frac{1}{2}\right)\) bằng

A. 0 B. -1 C. 1 D. \(\frac{1}{2}\)

Câu 5 : Tìm giá trị thực của tham số m để hàm số y = f (x ) = \(\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}khix\ne2\\mkhix=2\end{matrix}\right.\) liên tục tại x = 2

A. m = 3 B. m = 1 C. m = 2 D. m = 0

Câu 6 : Cho hàm số f(x) = \(\left\{{}\begin{matrix}\frac{x^2+4x+3}{x+3},khix>-3\\2a,khix\le-3\end{matrix}\right.\) . giá trị của để f ( x ) liên tục tại x0 = -3 là

A. 1 .B. 2 C. -1 D. -2

Câu 7 : Hàm số y = f (x) = \(\frac{x^3+xcosx+sinx}{2sinx+3}\) liên tục trên

A. [-1;1] B. [1;5] C. \(\left(-\frac{3}{2};+\infty\right)\) D. R

Câu 8 : Kết quả của giới hạn \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) là :

A. \(+\infty\) B. \(-\infty\) C. 0 D. \(\frac{5}{6}\)

Câu 9 : Với a là số thực khác 0 , \(lim_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^2-a^2}\) bằng :

A. a - 1 B. a + 1 C. \(\frac{a-1}{2a}\) D. \(\frac{a+1}{2a}\)

Câu 10 : giá trị của \(lim_{x\rightarrow+\infty}\frac{\sqrt{2+2x}-\sqrt{2x^2+2}}{2x}\) bằng

A. \(-\infty\) B. \(\sqrt{2}-\sqrt{3}\) C. \(+\infty\) D. \(-\sqrt{3}\)

Câu 11 : Kết quả của giới hạn \(lim_{x\rightarrow1^+}\frac{-2x+1}{x-1}\)là :

A. \(\frac{2}{3}\) B. \(-\infty\) C. \(\frac{1}{3}\) D. \(+\infty\)

Câu 12 : Đạo hàm của hàm số y = cot x là hàm số :

A. \(\frac{1}{sin^2x}\) B. \(-\frac{1}{sin^2x}\) C. \(\frac{1}{cos^2x}\) D. \(-\frac{1}{cos^2x}\)

Câu 13 : Đạo hàm của hàm số y = \(\left(x^3-2x^2\right)^{2020}\) là :

A. y' = \(2020\left(x^3-2x^2\right)^{2021}\)

B. y' = \(2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

C. y' = \(2019\left(x^3-2x^2\right)^{2020}\left(3x^2-4x\right)\)

D. y' = \(2019\left(x^3-2x^2\right)\left(3x^2-2x\right)\)

Câu 14 : Đạo hàm của hàm số y = \(\sqrt{4x^2+3x+1}\) là hàm số nào sau đây ?

A. y = \(\frac{1}{2\sqrt{4x^2+3x+1}}\)

B. y = \(\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

C. y = 12x + 3

D. y = \(\frac{8x+3}{\sqrt{4x^2+3x+1}}\)

Câu 15 : Tính đạo hàm của hàm số y = (x - 5)4

A. y' = ( x - 5 )3 B. y' = -20 (x-5)3 C. y' = -5(x-5)3 D. y' = 4(x-5)3

Câu 16 : Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

A. \(y^'=-\frac{sin2x}{2\sqrt{cos2x}}\)

B. y' = \(\frac{sin2x}{\sqrt{cos2x}}\)

C. y' = \(\frac{sin2x}{2\sqrt{cos2x}}\)

D. y' = \(-\frac{sin2x}{\sqrt{cos2x}}\)

Câu 17 : Đạo hàm của hàm số y = \(x^4+\frac{1}{x}-\sqrt{x}\) là :

A. y' = \(4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

B. y' = \(4x^3+\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

C. y' = \(4x^3+\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

D. y' = \(4x^3-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

Câu 18 : Tiếp tuyến với đồ thị y = x3 - x2 tại điểm có hoành độ x0 = -2 có phương trình là :

A. y = 20x + 14 B. y = 20x + 24 C. y = 16x + 20 D. y = 16x - 56

Câu 19 : Tính đạo hàm cấp hai của hàm số y = \(\frac{1}{x}\)

A. y'' = \(-\frac{2}{x^3}\)

B. y'' = \(-\frac{1}{x^2}\)

C. y'' = \(\frac{1}{x^2}\)

D. y'' = \(\frac{2}{x^3}\)

Câu 20 : Hàm số y = cot x có đạo hàm là :

A. \(y^'=-\frac{1}{sin^2x}\)

B. y' = - tan x

C. y' = \(-\frac{1}{cos^2x}\)

D. y' = 1 + cot2x

Câu 21 : Hàm số y = \(x-\frac{4}{x}\) có đạo hàm bằng

A. \(\frac{-x^2+4}{x^2}\)

B. \(\frac{x^2+4}{x^2}\)

C. \(\frac{-x^2-4}{x^2}\)

D. \(\frac{x^2-4}{x^2}\)

Câu 22 : Trong các dãy số (un) sau , dãy số nào có giới hạn bằng \(+\infty\) ?

A. \(u_n=\frac{1}{n}\)

B. \(u_n=\left(\frac{2}{3}\right)^n\)

C. \(u_n=\left(-\frac{1}{2}\right)^n\)

D. \(u_n=3^n\)

5
NV
10 tháng 6 2020

16.

\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)

17.

\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

18.

\(y'=3x^2-2x\)

\(y'\left(-2\right)=16;y\left(-2\right)=-12\)

Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)

19.

\(y'=-\frac{1}{x^2}=-x^{-2}\)

\(y''=2x^{-3}=\frac{2}{x^3}\)

20.

\(\left(cotx\right)'=-\frac{1}{sin^2x}\)

21.

\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)

22.

\(lim\left(3^n\right)=+\infty\)

NV
10 tháng 6 2020

11.

\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)

12.

\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)

13.

\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

14.

\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

15.

\(y'=4\left(x-5\right)^3\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:
Ước nguyên dương cùa $a$ có dạng $2^x3^y.5^z$

$x$ có $11$ cách chọn ($0\to 10$)

$y$ có $13$ cách chọn ($0\to 12$)

$z$ có $15$ cách chọn ($0\to 14$)

Do đó số ước nguyên dương của $a$ là $11.13.15=2145$