K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

Gọi độ dài các cạnh của tam giác lần lượt là x, y, z

Theo đề bài ta có: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án và x + y + z = 36

Theo tính chất của dãy tỉ số bằng nhau ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A

7 tháng 12 2020

Chọn ý A nha!

15 tháng 10 2016

Ta có: a + b + c = 36
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
a/3 = b/4 = c/5 = (a + b + c)/(3 + 4 + 5) = 36/12 = 3 
Độ dài ba cạnh của tam giác vuông là:
a/3 = 3 => a = 9
b/4 = 3 => b = 12
c/5 = 3 => c = 15
Diện tích tam giác vuông đó là: 1/2 . a.b = 1/2 . 9. 12 = 54 (đvdt)

15 tháng 10 2016

Gọi 3 cạnh của tam giác là a ; b ; c thỏa mãn \(\begin{cases}\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\\a+b+c=36\end{cases}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)

\(\Rightarrow\begin{cases}a=9\\b=12\\c=15\end{cases}\)

Ta biết trong tam giác vuông , cạnh huyền là cạnh lớn nhất

=> 2 cạnh góc vuông là 9 và 12

\(\Rightarrow S=\frac{9.12}{2}=54\) ( đơn vị diện tích )

24 tháng 11 2017

gọi các cạnh của tam giác lần lượt là a,b,c .

Theo bài ra : a + b + c = 64 và a,b,c tỉ lệ thuận với 3,6,7

\(\Rightarrow\frac{a}{3}=\frac{b}{6}=\frac{c}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{a}{3}=\frac{b}{6}=\frac{c}{7}=\frac{a+b+c}{3+6+7}=\frac{64}{16}=4\)

\(\Rightarrow a=12;b=24;c=28\)

Vậy ...

24 tháng 11 2017

Gọi a, b, c lần lượt là các cạnh của tam giác đó. Mà a, b, c tỉ lệ thuận với 3, 6, 7 => \(\frac{a}{3}=\frac{b}{6}=\frac{c}{7}\)

Mà chu vi của tam giác đó là 64 cm => a+b+c = 64

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{a}{3}=\frac{b}{6}=\frac{c}{7}=\frac{a+b+c}{3+6+7}=\frac{64}{16}=4\)

\(\frac{a}{3}\)=4 => a = 3.4=12

\(\frac{b}{6}\)= 4 => b = 6.4 = 24

\(\frac{c}{7}\)= 4 => c = 7.4 = 28

Vậy a = 12 , b=24 , c = 28

9 tháng 11 2016

1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm

3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)

=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2

4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)

9 tháng 11 2016

câu 3,4 bạn làm tỉ lệ thức là xong

16 tháng 10 2016

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

16 tháng 10 2016

Bài 5:

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b = c

24 tháng 6 2021

Gọi ba cạnh của tam giác đó lần lượt là a, b, c (cm)

Ta có: a, b, c tỉ lệ với 2, 3, 4 => a/2 = b/3 = c/4

Vì chu vi tam giác là 81cm =>a+b+c = 81

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a/2 = b/3 = c/4 = (a+b+c)/(2+3+4) = 81/9 = 9

=> a = 9x2 = 18; b = 9x3 = 27; c = 9x4 = 36

 Vậy ba cạnh của tam giác có số đo lần lượt là 18cm, 27cm và 36cm

24 tháng 6 2021

Gọi độ dài 3 cạnh tam giác lần lượt là a;b;;c (a;b;c > 0) 

Theo bài ra ta có : a + b +c = 81

Lại có \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{81}{9}=9\)

=> a = 2.9 = 18;

b = 3.9 = 27 ;

c = 4.9 = 36

Vậy độ dài 3 cạnh tam giác là 18 cm ; 27 cm ; 36 cm

26 tháng 4 2019

Bài 1 :

a ) Vì tam giác ABC có chu vi bằng 24 

=> AB + AC + BC = 24

hay a + b + c = 24

Vì 3 cạnh của tam giác ABC tỉ lệ với 3,4,5 

=> a/3 = b/4 = c/5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

a/3 = b/4 = c/5 = ( a + b + c ) / ( 3 + 4 + 5 ) = 24/12 = 2

=> a = 6 ; b = 8 ; c = 10

b ) Vì a = 6 => a2 = 36

          b = 8 => b2 = 64

          c = 10 => c2 = 100

MÀ 100 = 36 + 64 hay c= a2 + b2

Xét tam giác ABC có  c= a2 + b2 ( cmt )

=> tam giác ABC là tam giác vuông ( định lí đảo định lí pytago )

Vậy ...

26 tháng 4 2019

Bài 2 :

Đặt a/b = c/d = t ( t khác 0 ) => a = bt ; c = dt

Khi đó :

\(\frac{5a+5b}{5b}=\frac{5bt+5b}{5b}=\frac{5b\left(t+1\right)}{5b}=t+1\)( 1 )

\(\frac{c^2+cd}{cd}=\frac{\left(dt\right)^2+dtd}{dtd}=\frac{d^2t^2+d^2t}{d^2t}=t+1\)( 2 )

Từ ( 1 ) và ( 2 ) ta có dpcm

b ) ( chứng minh tương tự )

27 tháng 1 2021

A C B H

Áp dụng định lý Pytago ta có:

\(AC^2=AH^2+HC^2=12^2+16^2=400\)

\(\Rightarrow AC=20\left(cm\right)\)

Và \(BH^2=AB^2-AH^2=13^2-12^2=25\)

\(\Rightarrow BH=5\left(cm\right)\Rightarrow BC=BH+HC=5+16=21\left(cm\right)\)

Vậy \(\hept{\begin{cases}AC=20\left(cm\right)\\BC=21\left(cm\right)\end{cases}}\)

1 tháng 2 2021

Giải:

Hình bạn tự vẽ nhé.

Xét tam giác ACH vuông tại H có:

AH2 + CH2 = AC2  (định lí Pytago)

AC2 = 122 + 162 = 400

=> AC = \(\sqrt{400}\) = 20 (cm)   (vì AC > 0)

Xét tam giác ABH vuông tại H có:

AB2 = AH2 + BH2  (định lí Pytago)

132 = 122 + BH2

=> BH2 = 132 - 122 = 25

=> BH = \(\sqrt{25}\) = 5 (cm)

Ta có: BC = BH + CH

                 = 5 + 16 = 21 (cm)

=> CABC = AB + BC + AC = 21 + 13 + 20 = 54 (cm)

Vậy CABC = 54cm.