Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
a) Để A nhận giá trị nguyên thì: \(-n-7⋮n-2\)
\(\Rightarrow-n-7+n-2⋮n-2\)
\(\Rightarrow-9⋮n-2\Rightarrow n-2\inƯ\left(-9\right)\)
Mà \(Ư\left(-9\right)=\left\{-1;-9;1;9\right\}\)
\(\Rightarrow n-2\in\left\{-1;-9;1;9\right\}\)
\(\Rightarrow n\in\left\{1;-7;3;11\right\}\)
b) Để B có giá trị nguyên thì :\(n-6⋮n+5\)
\(\Rightarrow n-6-\left(n+5\right)⋮n+5\)
\(\Rightarrow n-6-n-5⋮n+5\)
\(\Rightarrow-11⋮n+5\Rightarrow n+5\inƯ\left(-11\right)\)
Mà \(Ư\left(-11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow n+5\in\left\{-1;-11;1;11\right\}\)
\(\Rightarrow n\in\left\{-6;-16;-4;6\right\}\)
(Mấy dạng này bạn cứ làm sao để bỏ n là được)
Nguyễn Châu Tuấn Kiệt ông có thể giúp tui bài này đc ko
a) |-3| - 2.x = -7
<=> 3 - 2.x = -7
<=> -2.x = -7 - 3
<=> -2.x = -10
<=> x = (-10) : (-2)
<=> x = 5
=> x = 5
b) \(x+75\%=\frac{7}{8}\)
\(\Leftrightarrow x+\frac{75}{100}=\frac{7}{8}\)
\(\Leftrightarrow x+\frac{3}{4}=\frac{7}{8}\)
\(\Leftrightarrow x=\frac{7}{8}-\frac{3}{4}\)
\(\Leftrightarrow x=\frac{1}{8}\)
Bài 1
a) \(\frac{5}{6}=\frac{x-1}{x}\)
<=> 5x=6x-6
<=> 5x-6x=-6
<=> -11x=-6
<=> \(x=\frac{6}{11}\)
b)c)d) nhân chéo làm tương tự
a) Theo bài ra, ta có:
\(\overline{abbc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)
Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)
\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)
\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)
Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)
Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)
\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)
\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)
\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)
\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)
\(\Rightarrow b=45:5=9.\)
Vậy \(a=1;b=9;c=5.\)
b) Theo bài ra, ta có:
\(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)
Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)
\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.
\(2012\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)
\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)
\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)
\(92\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)
\(\Rightarrow92^{94}=4n\left(n\in N\right)\)
\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)
Thay vào, ta được :
\(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)
\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2
\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5
\(\Rightarrow A⋮5.\)
Vậy A là một số tự nhiên chia hết cho 5.
\(\)
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
Chọn D.
Với mọi giá trị của b thì a . b ⋮ 7