bài giải bất phương trình 

|x−3|-5\(\le\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

trả lời đại thôi nha haha


Đặt 2 trường hợp :

_Trường hợp 1 x-3>=0: 

Ta có : x-3-5<=0 suy ra x<=8 .

_Trường hợp 2 : x-3<0 

Ta có : 3-x-5<=0 suy ra x>=2

 

 

29 tháng 2 2016

khó quá

24 tháng 3 2020
https://i.imgur.com/5chHFU9.jpg
NV
1 tháng 3 2020

1. \(\Leftrightarrow\left(3x-1\right)\left(\sqrt{5}x-2\right)\ge0\Rightarrow\left[{}\begin{matrix}x\le\frac{1}{3}\\x\ge\frac{2}{\sqrt{5}}\end{matrix}\right.\)

2. \(\Leftrightarrow\frac{\left(3-2x\right)\left(3+2x\right)}{2x-3}\ge0\Leftrightarrow\left[{}\begin{matrix}x\ne\frac{3}{2}\\x\le-\frac{3}{2}\end{matrix}\right.\)

3. \(\left|x-2\right|\ge3\Leftrightarrow\left[{}\begin{matrix}x-2\ge3\\x-2\le-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)

4. \(\Leftrightarrow-10\le3x+1\le10\Rightarrow-\frac{11}{3}\le x\le3\)

5. \(\Leftrightarrow\frac{3x^2-x+2}{x^2-9}-3\le0\Leftrightarrow\frac{-x+29}{\left(x-3\right)\left(x+3\right)}\le0\Rightarrow\left[{}\begin{matrix}-3< x< 3\\x\ge29\end{matrix}\right.\)

6. \(\Leftrightarrow\frac{4}{\left(x-2\right)^2}+\frac{1}{x-2}>0\Leftrightarrow\frac{x+2}{\left(x-2\right)^2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge-2\\x\ne2\end{matrix}\right.\)

16 tháng 3 2020

\(21,\frac{2}{x-1}\le\frac{5}{2x-1}\left(x\ne1;x\ne\frac{1}{2}\right)\)

\(\Leftrightarrow\frac{2}{x-1}-\frac{5}{2x-1}\le0\)

\(\Leftrightarrow\frac{4x-2-5x+5}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)

\(\Leftrightarrow\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)

x -x+3 x-1 2x-1 VT -∞ +∞ 1/2 1 3 0 0 0 | | || | | || | | 0 - + + + + + - - - + + + + + + - -

Vậy \(\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\le0\Leftrightarrow x\in\left(\frac{1}{2};1\right)\cup[3;+\text{∞})\)

23,24 tương tự 21

\(25,2x^2-5x+2< 0\) (1)

Ta có: \(\left\{{}\begin{matrix}2x^2-5x+2=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\a=2>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{2}< x< 2\)

\(26,-5x^2+4x+12< 0\)

\(\left\{{}\begin{matrix}-5x^2+4x+12=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{6}{5}\end{matrix}\right.\\a=-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< -\frac{6}{5}\end{matrix}\right.\)

\(27,16x^2+40x+25>0\)

\(\left\{{}\begin{matrix}16x^2+40x+25=0\Leftrightarrow x=-\frac{5}{4}\\a=16>0\end{matrix}\right.\)

\(\Leftrightarrow x\ne-\frac{5}{4}\)

\(28,-2x^2+3x-7\ge0\)

\(\left\{{}\begin{matrix}-2x^2+3x-7=0\left(vo.nghiem\right)\\a=-2< 0\end{matrix}\right.\)

\(\Rightarrow-2x^2+3x-7< 0\) ∀x

=> bpt vô nghiệm

\(29,3x^2-4x+4\ge0\)

\(\left\{{}\begin{matrix}3x^2-4x+4=0\left(vo.nghiem\right)\\a=3>0\end{matrix}\right.\)

=> \(3x^2-4x+4>0\) => bpt vô số nghiệm

\(30,x^2-x-6\le0\)

\(\left\{{}\begin{matrix}x^2-x-6=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\a=1>0\end{matrix}\right.\)

\(\Rightarrow-2\le x\le3\)

29 tháng 12 2015
  
  
  

 

30 tháng 12 2015

1488