Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi qua VTCB, tốc độ của con lắc đạt cực đại là:
\(v_{max}=\omega A =\sqrt{\dfrac{k}{m}}.A\)
\(\Rightarrow m = \dfrac{kA^2}{v_{max}^2}=\dfrac{a}{v_{max}^2}\) (vì \(kA^2=const\))
Theo đề bài ta có: \(m_3=9m_1+4m_2\)
\(\Rightarrow \dfrac{a}{v_3^2}=\dfrac{9a}{v_1^2}+\dfrac{4a}{v_2^2}\)
\(\Rightarrow \dfrac{1}{v_3^2}=\dfrac{9}{v_1^2}+\dfrac{4}{v_2^2}\)
\(\Rightarrow \dfrac{1}{v_3^2}=\dfrac{9}{20^2}+\dfrac{4}{10^2}\)
\(\Rightarrow v_3=4m/s\)
Chọn đáp án B.
Ta có: \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)
\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)
KQ = 3,2 cm
Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4
\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)
\(\Rightarrow T = \dfrac{\pi}{10}\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)
Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)
Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)
Hai điểm cách gần nhau nhất là: \(\dfrac{\lambda}{2}=10\Rightarrow \lambda=20cm\)
M O1 O2 d1 d2
M dao động cực đại và cách O2 xa nhất khi M nằm ở vân ngoài cùng về phía O1.
Vị trí vân cực đại này là: \([\dfrac{196}{2.20}]=4\)
\(\Rightarrow d_2-d_1=4.\lambda=4.20=80cm\)
\(\Rightarrow d_2= d_1+80=196+80=276cm\)
Chọn D
Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.
Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)
Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)
+ \(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)
+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)
\(\Rightarrow A = 5cm\)
+ Ban đầu ta có \(x_0=3cm\); \(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)
\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)
\(\Rightarrow \varphi \approx0,3\pi(rad)\)
Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)
C.
\(T_{1_{ }_{ }}:T_{2_{ }}=\sqrt{\dfrac{m.k_2}{k_1.m}}=\sqrt{\dfrac{k_2}{k_1}}=\dfrac{1}{2}\)
\(\dfrac{k_2}{k_1}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}k_1=4k_2\\k_1+k_2=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k_2=1\\k_1=4\end{matrix}\right.\)
Ta có :
\(64^2_1x=36x^2_2=48^2\)
=> \(64x_1\le48^2\)
=> \(36x_2\le48^2\)
=> A1 = 6 (cm)
=> A2 = 8 (cm)
=> \(\frac{V_2}{V_1}=\frac{\omega\sqrt{A^2_2-x^2_2}}{\omega\sqrt{A^2_1-x^2_1}}=\frac{\sqrt{A^2_2-x^2_2}}{\sqrt{A^2_1-x^2_1}}=\frac{4}{3\sqrt{3}}\)
Vậy V2 = \(\frac{4.18}{3\sqrt{3}}=8\sqrt{3}\) (cm/giây)
Tại thời điểm t = 0 để ba dao động này thẳng hàng thì
→ dễ thấy rằng chỉ có A và B là phù hợp.
+ Tương tự như vậy, sau khoảng thời gian 0,25T, m1 đến biên, m2 trở vè vị trí cân bằng. Để ba vật thẳng hàng thì
Tại thời điểm t = 0 vật có li độ x3 = 3 cm sau đó 0,25T vật vẫn có li độ x3 = 3 cm → tại t = 0 vật chuyển động theo chiều dương → φ0 = 0,25π.
Đáp án A