K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

Để hàm số xác định trên $x\in [0;2]$ thì:
\(\left\{\begin{matrix} x+2m-1\geq 0\\ 4-2m-\frac{x}{2}\geq 0\end{matrix}\right., \forall x\in [0;2]\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1-x}{2}\\ m\leq 2-\frac{x}{4}\end{matrix}\right., \forall x\in [0;2]\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1-0}{2}\\ m\leq 2-\frac{2}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq \frac{1}{2}\\ m\leq \frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\in [\frac{1}{2}; \frac{3}{2}]\)

31 tháng 1 2020

\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)

Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)

\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0

11 tháng 10 2019

Để hàm số y = f(x) = \(\frac{2x-3}{x^2-\left(2m-1\right)x+m^2}\) xác định trên \(ℝ\)khi và chỉ khi  \(x^2-\left(2m-1\right)x+m^2\ne0\)\(\forall x\inℝ\)

Nghĩa là \(x^2-\left(2m-1\right)x+m^2=0\) vô nghiệm

<=> \(\Delta< 0\)

<=> \(\left(2m-1\right)^2-4m^2< 0\)

<=> \(-4m+1< 0\)

<=> m > 1/4.

NV
30 tháng 9 2020

ĐKXĐ: \(x\ge2m-1\)

Để hàm xác định trên đoạn đã cho \(\Rightarrow2m-1\le1\Rightarrow m\le1\)

18 tháng 9 2018

Đề viết thiếu, để ... (biểu thức trên) lớn hơn 0, ...

28 tháng 9 2018

m thuộc (1;5)?