K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

a.)Đkxđ bạn tự tìm nha!!!

A=\(\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(\Leftrightarrow\)\(\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(\Leftrightarrow\)\(\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+x+1}\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{x^2+x+1}\)

\(\Leftrightarrow\)\(\frac{2x+1}{\left(x-1\right)\left(x+1\right)}:\frac{2x+1}{x^2+2x+1}\)

\(\Leftrightarrow\)\(\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)

\(\Leftrightarrow\)\(\frac{x+1}{x-1}\left(tm\text{đ}k\right)\)

b.)Thay \(x=\frac{1}{2}\)vào A \(\Rightarrow\)\(A=-3\)

           

13 tháng 12 2020

a, \(A=\left(\frac{1}{x-1}+\frac{x}{x^2-1}\right):\frac{2x+1}{x^2+2x+1}\)

\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x+1}{\left(x+1\right)^2}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}=\frac{x+1}{x-1}\)

b, Thay x = -2 ta được : 

\(\frac{x+1}{x-1}=\frac{-2+1}{-2-1}=\frac{1}{3}\)

Vậy A nhận giá trị 1/3 

13 tháng 12 2020

\(A=\left(\frac{1}{x-1}+\frac{x}{x^2-1}\right)\div\frac{2x+1}{x^2+2x+1}\)

\(=\left(\frac{1}{x-1}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right)\div\frac{2x+1}{\left(x+1\right)^2}\)

\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{\left(x+1\right)^2}{2x+1}\)

\(=\frac{2x+1}{\left(x-1\right)\left(x+1\right)}\times\frac{\left(x+1\right)^2}{2x+1}\)

\(=\frac{x+1}{x-1}\)

Với x = -2 (tmđk) => \(A=\frac{-2+1}{-2-1}=\frac{-1}{-3}=\frac{1}{3}\)

20 tháng 2 2020

\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)   ĐKXD: \(x\ne\pm2,x\ne0,x\ne3\)

\(\Leftrightarrow\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{2+x}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)

\(\Leftrightarrow\left(\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x-3}{x\left(2-x\right)}\right)\)

\(\Leftrightarrow\left(\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\right)\cdot\left(\frac{x\left(2-x\right)}{x-3}\right)\)

\(\Leftrightarrow\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)

\(\Leftrightarrow\frac{4x^2}{x-3}\)

b, Để A>0 thì \(\frac{4x^2}{x-3}>0\)

\(\Rightarrow4x^2>0\)

\(\Rightarrow x>0\)

c, Ta có

\(\left|x-7\right|=4\)

\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\left(l\right)\end{cases}}}\)

 Với \(x=11\Rightarrow\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)