Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=9\Rightarrow\sqrt{x}=3\Rightarrow A=\frac{3+2}{3-5}=\frac{5}{-2}=-\frac{5}{2}\\ \)
\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}=\frac{3.\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}+\frac{20-2\sqrt{x}}{\left(x+\sqrt{5}\right).\left(x-\sqrt{5}\right)}\)
\(=\frac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}+5}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}=\frac{1}{\sqrt{x}-5}\)
\(A=B.\left|x-4\right|\Leftrightarrow\left|x-4\right|=A:B=\frac{\sqrt{x}+2}{\sqrt{x}-5}:\frac{1}{\sqrt{x}-5}=\sqrt{x}+2\)
\(\Rightarrow\left(x-4\right)^2=\left(\sqrt{x}+2\right)^2\Leftrightarrow x^2-8x+16=x+4\sqrt{x}+4\)
\(\Leftrightarrow x^2-9x-4\sqrt{x}+12=0\Leftrightarrow x.\left(x-9\right)-4.\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x.\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)-4.\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(x\sqrt{x}+3x-4\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(\left(x\sqrt{x}-x\right)+\left(4x-4\right)\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(x.\left(\sqrt{x}-1\right)+4.\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(\sqrt{x}-1\right).\left(x+4\sqrt{x}+4\right)=0\Leftrightarrow\left(\sqrt{x}-3\right).\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-3=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}}\)(Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\left(\sqrt{x}+2\right)^2\ge4>0\))
Ta có \(\frac{A}{B}=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\left(\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\right)=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\left[\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\right]=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)=\sqrt{x}+4\)
Để \(\frac{A}{B}\ge\frac{x}{4}+5\) thì \(\sqrt{x}+4\ge\frac{x}{4}+5\Leftrightarrow\sqrt{x}\ge\frac{x}{4}+1\Leftrightarrow x-4\sqrt{x}+4\le0\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\)
Mà \(\left(\sqrt{x}-2\right)^2\ge0\)
Suy ra \(\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(tm)
Vậy x=4 thì \(\frac{A}{B}\ge\frac{x}{4}+5\)
\(B=\frac{1}{\sqrt{x}-1}\) (tự rút gọn nha)
\(\frac{A}{B}\ge\frac{x}{4}+5\\ \sqrt{x}+4\ge\frac{x}{4}+5\\ \frac{x}{4}-\sqrt{x}+1\le0\\ x-4\sqrt{x}+4\le0\\ \left(\sqrt{x}-2\right)^2\le0\\ \Rightarrow\sqrt{x}-2=0\\ \Rightarrow x=4\)
Vậy để \(\frac{A}{B}\ge\frac{x}{4}+5\) thì x=4
Câu 1:
\(\frac{A}{B}\ge\frac{x}{4}+5\Leftrightarrow\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{1}{\sqrt{x}-1}\ge\frac{x}{4}+5\)
\(\Rightarrow\sqrt{x}+4\ge\frac{x}{4}+5\Rightarrow x-4\sqrt{x}+4\le0\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2\le0\Rightarrow\sqrt{x}-2=0\Rightarrow x=4\)
Câu 2:
Bạn coi lại đề, biểu thức B không hợp lý
\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)
\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
a.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\)
\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)
\(\Leftrightarrow3>2\)
Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)
Lát mình giải 2 câu kia,di ăn com cái
b.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)
\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)
\(\Leftrightarrow x>0\)
Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)
c.Ta co:
\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)
\(\Leftrightarrow x-4\sqrt{x}+5< 0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)
Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)
Với \(x\ge0;x\ne1\)
\(\frac{A}{B}\ge\frac{x}{4}+5\Leftrightarrow\sqrt{x}+4\ge\frac{x+20}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x}+16-x-20}{4}\ge0\Leftrightarrow\frac{-x+4\sqrt{x}-4}{4}\ge0\)
\(\Rightarrow-x+4\sqrt{x}-4\ge0\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\Leftrightarrow x< 4\)
Kết hợp với đk vậy \(0\le x< 4;x\ne1\)