\(\frac{\sqrt{x}+4}{\sqrt{x}-1}\) B= \(\frac{3\sqrt{x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2019

Câu 1:

\(\frac{A}{B}\ge\frac{x}{4}+5\Leftrightarrow\frac{\sqrt{x}+4}{\sqrt{x}-1}:\frac{1}{\sqrt{x}-1}\ge\frac{x}{4}+5\)

\(\Rightarrow\sqrt{x}+4\ge\frac{x}{4}+5\Rightarrow x-4\sqrt{x}+4\le0\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2\le0\Rightarrow\sqrt{x}-2=0\Rightarrow x=4\)

Câu 2:

Bạn coi lại đề, biểu thức B không hợp lý

12 tháng 8 2020

a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)

b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)

<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)

<=> \(-x-5\sqrt{x}+14\ge0\)

<=> \(x+5\sqrt{x}-14\le0\)

<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)

<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)

Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)

<=> \(\sqrt{x}\le2\) <=> \(x\le4\)

Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25

và x thuộc Z => x = {0; 1; 2; 3}

d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)

M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))

Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)

Vậy MaxM = 1 khi x = 1

Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)

do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)

Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)

Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)

do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)

Đến đây xét từng TH là  ra

8 tháng 3 2020

rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)

=\(1+\frac{5}{\sqrt{x}+1}\)

Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)

Đến đây thì ez rồi

13 tháng 3 2020

\(A=\frac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{\sqrt{x}-1}\)  \(\left(x\ge0;x\ne1\right)\)

\(A=\frac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

và \(B=\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{x}+1}\)

\(B=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(B=\sqrt{3}+2+\frac{1}{\sqrt{3}-\sqrt{2}}+\sqrt{2}\)

\(B=\sqrt{3}+\sqrt{2}+\frac{1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)+1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{3-2+1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{2}{\sqrt{3}-\sqrt{2}}+2\)

để A = B thì \(\sqrt{x}-1\)\(\frac{2}{\sqrt{3}-\sqrt{2}}+2\)

\(\sqrt{x}=\frac{2}{\sqrt{3}-\sqrt{2}}+3\)

\(\sqrt{x}=\frac{2\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+3\)

\(\sqrt{x}=2\sqrt{3}+2\sqrt{2}+3\)

tới bước này tui bí :(( mong các bạn giỏi khác giúp bạn :D

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

1 tháng 8 2021

bổ sung thêm đề bài là \(x\ge0;x\ne25\) nha

1 tháng 8 2021

\(a,B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)

\(B=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\frac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(B=\frac{5+\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\frac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(B=\frac{1}{\sqrt{x}+1}\)

\(b,P=A.B=\frac{4\left(\sqrt{x}+1\right)}{25-x}.\frac{1}{\sqrt{x}+1}\)

\(P=\frac{4}{25-x}\)

bổ sung điều kiện cho câu b là x nguyên

\(TH1:x>25< =>P< 0\left(KTM\right)\)

\(TH2:x< 25< =>P>0\)mà x nguyên

\(\frac{4}{25-x}\le4\)

dấu "=" xảy ra khi \(x=24\)

\(< =>MAX:P=4\)

28 tháng 4 2020

a) Vì x>=0 và x2=16

=> x=4 => \(\sqrt{x}=2\)

=> B=\(\frac{2\cdot2+3}{4-1}=\frac{7}{3}\)

b) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1}\)

\(=\frac{x+2\sqrt{x}+1-x+\sqrt{x}+2\sqrt{x}-2}{x-1}\)

\(=\frac{5\sqrt{x}-1}{x-1}\)

=> \(A\left(x-1\right)=5\sqrt{x}-1\left(đpcm\right)\)

c) \(\frac{A}{B}=\frac{5\sqrt{x}-1}{x-1}\cdot\frac{x-1}{2\sqrt{x}+3}=\frac{5\sqrt{x}-1}{2\sqrt{x}+3}=\frac{\frac{5}{2}\left(2\sqrt{x}+3\right)-\frac{17}{2}}{2\sqrt{x}+3}=\frac{5}{2}-\frac{17}{2\left(2\sqrt{x}+3\right)}\)

=> 17 chia hết cho \(2\sqrt{x}+3\)

\(\Rightarrow2\sqrt{x}+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)

ta có bảng

\(2\sqrt{x}+3\)-17-1117
\(\sqrt{x}\)-17-2-7
x\(\varnothing\)49\(\varnothing\)\(\varnothing\)