Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 x (6/1-6/3+6/3-6/5+ ... +6/37-6/39)
1/2 x (6/1-6/39)
1/2 x 228/39
228/78
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)
\(=\frac{4}{15}+\frac{9}{5}\)
\(=\frac{31}{15}\)
Bài làm :
Ta có :
\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}+\frac{2}{1\times2}+\frac{2}{2\times3}+...+\frac{2}{9\times10}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)
\(=\frac{31}{15}\)
p=1/(3*5)+1/(5*7)+.....+1/(2015*2017)+1/(2017*2019)
<=> p = 1/3-1/5+1/5-1/7+1/7-......+1/2017-1/2019
<=> p = 1/3 - 1/2019
<=> p = 224/673
\(P=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2019}\right)\)
\(=\frac{112}{673}\)
\(A=\frac{1}{3}-\frac{1}{17}=\frac{14}{51}\)
cách làm thì tự biết
trên mạng đầy
kết quả đúng phải là 7/51 chứ bn
mk cần cách trình bày thôi
câu trả lời của bn hơi lạnh nhạt tí ^.^
a ) A = 20,15 x 25,75 + 74,25 x 20,15
A = 20,15 x ( 25,75 + 74,25 )
A = 20,15 x 100
A = 2015
Tính bằng cách thuận tiện nhất
a) A = 20,15 x 25,75 + 74,25 x 20,15
= 20,15 x (25,75 + 74,25)
= 20,15 x 100
= 2015
\(.A=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{2013}\right)\)
\(A=\frac{1004}{10065}\)
<a class="ptip tipped" data-name="Nguyễn Ngọc Sáng" data-image="http://olm.vn/images/avt/avt424601_60by60.jpg" href="/thanhvien/nguyenngocsang6a" data-uid="125744" data-hasqtip="true" aria-describedby="qtip-2"> Sáng Nguyễn </a>
A=1/5x7+11/7x9+1/9x11+....+1/2011x2013
2xA=2x(1/5x7+1/7x9+1/9x11+...+1/2011x2013
2xA=2/5x7+2/7x9+2/9x11+...+2/2011x2013
2xA=1/5-1/7+1/7-1/9+1/9-1/11+...+1/2011-1/2013
2xA=1/5-1/2013
2xA=2013/10045-5/10045
2xA=2008/10045
A=2008/10045:2
A=2008/10045x1/2
A=1004/10045
Tìm x:
\(\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{19x21}\right).x=\frac{9}{7}\)
\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left(\frac{1}{2}.\frac{2}{7}\right)x=\frac{9}{7}\)
\(\frac{1}{7}.x=\frac{9}{7}\)
\(x=\frac{9}{7}\div\frac{1}{7}\)
\(x=9\)
Vậy ...
Ta có:
\(A=\frac{6}{5x7}+\frac{6}{7x9}+...\frac{6}{97x99}\)
\(=3x\left(\frac{2}{5x7}+\frac{2}{7x9}+...\frac{2}{97x99}\right)\)
\(=3x\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=3x\left(\frac{1}{5}-\frac{1}{99}\right)\)
\(=3x\left(\frac{99}{495}-\frac{5}{495}\right)\)
\(=3x\frac{94}{495}=\frac{94}{165}\)
Vậy \(A=\frac{94}{165}\)
\(\frac{6}{5}\)x 7 + \(\frac{6}{7}\)x 9 + .... + \(\frac{6}{97}\)x 99
= \(\frac{6}{5}\) - \(\frac{6}{7}\)+\(\frac{6}{7}\)- \(\frac{6}{9}\)+ ..... + \(\frac{6}{97}\)- \(\frac{6}{99}\)
=\(\frac{6}{5}\) - \(\frac{6}{99}\)= \(\frac{188}{165}\)
nhớ cho đúng đó